Polynomials

BobbyJones

New member
Joined
Aug 15, 2011
Messages
35
This question says the 7th degree polynomial x^7 - 3x^6 - 7x^4 + 21x^3 - 8x +24 has a factor of (x-3)


a) Divide x^7 - 3x^6 - 7x^4 + 21x^3 - 8x +24 bu x-3, and put in form (x-3)(ax^6+bx^3+c)

---I've done this part

b) By putting z = x^3, find all the factors, real or complex of the 6th degree polynomial and thus express x^7 - 3x^6 - 7x^4 + 21x^3 - 8x +24 as the product of seven linear factors.

----I've managed to find the real factors but cant find the Imaginary. Can someone show me how to work out the imaginary factors please.

Thankyou.
 
Hello, BobbyJones!

The polynomial f(x)=x73x67x4+21x38x+24\displaystyle \text{The polynomial }f(x) \:=\:x^7 - 3x^6 - 7x^4 + 21x^3 - 8x +24 . has a factor of (x3).\displaystyle \text{ has a factor of }(x-3).

a) Divide f(x) by x3, and put in the form: (x3)(ax6+bx3+c)\displaystyle \text{a) Divide }f(x)\text{ by }x-3\text{, and put in the form: }(x-3)(ax^6+bx^3+c)

--- I've done this part


b) By putting z = x^3, . This is unnecessary.
. . find all the factors, real or complex of the 6th degree polynomial
. . and thus express f(x)\displaystyle f(x) as the product of seven linear factors.

--- I've managed to find the real factors but cant find the Imaginary.
. . Can someone show me how to work out the imaginary factors please?
. . Thankyou.

f(x)\displaystyle f(x) factors: .(x3)(x67x38)=0\displaystyle (x-3)(x^6 - 7x^3 - 8) \:=\:0

Hence, one of the factors is: (x3)\displaystyle (x - 3)


We have: .x67x38=0\displaystyle x^6 - 7x^3 - 8 \:=\:0

Factor: .(x3+1)(x38)=0\displaystyle (x^3 + 1)(x^3-8) \:=\:0

And we have two cubic equations to solve . . .


x3+1=0(x+1)(x2x+1)=0\displaystyle x^3 + 1 \:=\:0 \quad\Rightarrow\quad (x+1)(x^2 - x + 1) \:=\:0

. . Hence: .(x+1)\displaystyle (x + 1) is a factor.

.x2x+1=0x=1±i32\displaystyle x^2-x+1\:=\:0 \quad\Rightarrow\quad x \:=\:\dfrac{1 \pm i\sqrt{3}}{2}
. . Hence: ..(x1+i32) and (x1i32) are factors.\displaystyle \left(x - \frac{1 + i\sqrt{3}}{2}\right)\,\text{ and }\,\left(x - \frac{1-i\sqrt{3}}{2}\right)\,\text{ are factors.}


x38=0(x2)(x2+2x+4)=0\displaystyle x^3 - 8 \:=\:0 \quad\Rightarrow\quad (x - 2)(x^2 +2x + 4) \:=\:0

. . Hence: .(x2)\displaystyle (x-2) is a factor.

x2+2x+4=0x=-2±122=-2±2i32=-1±i3\displaystyle x^2 + 2x + 4 \:=\:0 \quad\Rightarrow\quad x \:=\:\dfrac{\text{-}2 \pm\sqrt{-12}}{2} \:=\:\dfrac{\text{-}2\pm2i\sqrt{3}}{2} \:=\:\text{-}1 \pm i\sqrt{3}

. . Hence: .(x[-1+i3]) and (x[-1i3]) are factors.\displaystyle \left(x - \left[\text{-}1 + i\sqrt{3}\right]\right)\,\text{ and }\,\left(x - \left[\text{-}1 - i\sqrt{3}\right]\right)\,\text{ are factors.}


Therefore: .f(x)  =  (x3)(x+1)(x2)(x1±i32)(x[-1±i3])\displaystyle f(x) \;=\;(x-3)(x+1)(x-2)\left(x - \frac{1\pm i\sqrt{3}}{2}\right)\big(x - [\text{-}1 \pm i\sqrt{3}]\big)


By the way, this is not a Differential Equation problem.
 
Last edited:
Top