power and energy

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,678
Determine the values of Px\displaystyle P_x and Ex\displaystyle E_x for each of the following signals:

(a) x1(t)=e2tu(t)\displaystyle \bold{(a)} \ x_1(t) = e^{-2t}u(t)

(b) x2(t)=ej(2t+π/4)\displaystyle \bold{(b)} \ x_2(t) = e^{j(2t + \pi/4)}

(c) x3(t)=cost\displaystyle \bold{(c)} \ x_3(t) = \cos t

(d) x1[n]=(12)nu[n]\displaystyle \bold{(d)} \ x_1[n] = \left(\frac{1}{2}\right)^n u[n]

(e) x2[n]=ej(π/2n+π/8)\displaystyle \bold{(e)} \ x_2[n] = e^{j(\pi/2n + \pi/8)}

(f) x3[n]=cosπ4n\displaystyle \bold{(f)} \ x_3[n] = \cos \frac{\pi}{4}n
 
Let us first show the formulas for the power Px\displaystyle P_x and energy Ex\displaystyle E_x.

For a continuous-time signal x(t)\displaystyle \textcolor{red}{\text{x(t)}}, we have:

Px=limT12TTTx(t)2 dt\displaystyle P_x = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x(t)|^2 \ dt

Ex=x(t)2 dt\displaystyle E_x = \int_{-\infty}^{\infty} |x(t)|^2 \ dt


For a discrete-time signal x[n]\displaystyle \textcolor{red}{\text{x[n]}}, we have:

Px=limN12N+1n=NNx[n]2\displaystyle P_x = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} |x[n]|^2

Ex=n=x[n]2\displaystyle E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2
 
(a) x1(t)=e2tu(t)\displaystyle \bold{(a)} \ x_1(t) = e^{-2t}u(t)

Px=limT12TTTx1(t)2 dt=limT12TTTe2tu(t)2 dt\displaystyle P_x = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x_1(t)|^2 \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |e^{-2t}u(t)|^2 \ dt


=limT12T0Te4t dt=limT12Te4t40T\displaystyle = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{0}^{T} e^{-4t} \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T} \frac{e^{-4t}}{-4}\bigg|_{0}^{T}


=limT(e4T8T+18T)=0+0=0\displaystyle = \lim_{T \rightarrow \infty} \left(-\frac{e^{-4T}}{8T} + \frac{1}{8T}\right) = -0 + 0 = \textcolor{blue}{0}
 
(a) x1(t)=e2tu(t)\displaystyle \bold{(a)} \ x_1(t) = e^{-2t}u(t)

Ex=x1(t)2 dt=e2tu(t)2 dt\displaystyle E_x = \int_{-\infty}^{\infty} |x_1(t)|^2 \ dt = \int_{-\infty}^{\infty} |e^{-2t}u(t)|^2 \ dt


=0e4t dt=e4t40=0+14=14\displaystyle = \int_{0}^{\infty} e^{-4t} \ dt = \frac{e^{-4t}}{-4}\bigg|_{0}^{\infty} = 0 + \frac{1}{4} = \textcolor{blue}{\frac{1}{4}}
 
(b) x2(t)=ej(2t+π/4)\displaystyle \bold{(b)} \ x_2(t) = e^{j(2t + \pi/4)}

Px=limT12TTTx2(t)2 dt=limT12TTTej(2t+π/4)2 dt\displaystyle P_x = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x_2(t)|^2 \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |e^{j(2t + \pi/4)}|^2 \ dt


=limT12TTT dt=limT12TtTT=limT2T2T=1\displaystyle = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T} t\bigg|_{-T}^{T} = \lim_{T \rightarrow \infty}\frac{2T}{2T} = \textcolor{blue}{1}
 
(b) x2(t)=ej(2t+π/4)\displaystyle \bold{(b)} \ x_2(t) = e^{j(2t + \pi/4)}

Ex=x2(t)2 dt=ej(2t+π/4)2 dt\displaystyle E_x = \int_{-\infty}^{\infty} |x_2(t)|^2 \ dt = \int_{-\infty}^{\infty} \left|e^{j(2t + \pi/4)}\right|^2 \ dt


= dt=t=+=\displaystyle = \int_{-\infty}^{\infty} \ dt = t\bigg|_{-\infty}^{\infty} = \infty + \infty =\textcolor{blue}{\infty}
 
(c) x3(t)=cost\displaystyle \bold{(c)} \ x_3(t) = \cos t

Px=limT12TTTx3(t)2 dt=limT12TTTcost2 dt\displaystyle P_x = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |x_3(t)|^2 \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} |\cos t|^2 \ dt


=limT12TTTcos2t dt=limT12TTT[cos2t+12] dt\displaystyle = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} \cos^2 t \ dt = \lim_{T \rightarrow \infty}\frac{1}{2T}\int_{-T}^{T} \left[\frac{\cos 2t + 1}{2}\right] \ dt


=limT12T[sin2t4+t2]TT=limT12T[sin2T4+T2sin2T4T2]\displaystyle = \lim_{T \rightarrow \infty}\frac{1}{2T}\left[\frac{\sin 2t}{4} + \frac{t}{2}\right]_{-T}^{T} = \lim_{T \rightarrow \infty}\frac{1}{2T}\left[\frac{\sin 2T}{4} + \frac{T}{2} - \frac{\sin -2T}{4} - \frac{-T}{2}\right]


=limT12T[sin2T4+T2+sin2T4+T2]=limT12T[sin2T2+T]\displaystyle = \lim_{T \rightarrow \infty}\frac{1}{2T}\left[\frac{\sin 2T}{4} + \frac{T}{2} + \frac{\sin 2T}{4} + \frac{T}{2}\right] = \lim_{T \rightarrow \infty}\frac{1}{2T}\left[\frac{\sin 2T}{2} + T\right]


=limT[sin2T4T+12]=0+12=12\displaystyle = \lim_{T \rightarrow \infty}\left[\frac{\sin 2T}{4T} + \frac{1}{2}\right] = 0 + \frac{1}{2} = \color{blue} \frac{1}{2}
 
(c) x3(t)=cost\displaystyle \bold{(c)} \ x_3(t) = \cos t

Ex=x3(t)2 dt=cost2 dt\displaystyle E_x = \int_{-\infty}^{\infty} |x_3(t)|^2 \ dt = \int_{-\infty}^{\infty} \left|\cos t\right|^2 \ dt


=cos2t dt=[cos2t+12] dt=[sin2t4+t2]=R4+=\displaystyle = \int_{-\infty}^{\infty} \cos^2 t \ dt = \int_{-\infty}^{\infty} \bigg[\frac{\cos 2t + 1}{2}\bigg] \ dt = \bigg[\frac{\sin 2t}{4} + \frac{t}{2}\bigg]_{-\infty}^{\infty} = \frac{R}{4} + \infty = \color{blue} \infty

where 1R1\displaystyle -1 \leq R \leq 1
 
(d) x1[n]=(12)nu[n]\displaystyle \bold{(d)} \ x_1[n] = \left(\frac{1}{2}\right)^n u[n]

Px=limN12N+1n=NNx1[n]2=limN12N+1n=NN(12)nu[n]2\displaystyle P_x = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} |x_1[n]|^2 = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} \bigg|\left(\frac{1}{2}\right)^n u[n]\bigg|^2


=limN12N+1n=0N(12)2n=limN12N+1n=0N(14)n\displaystyle = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=0}^{N} \left(\frac{1}{2}\right)^{2n} = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=0}^{N} \left(\frac{1}{4}\right)^{n}


=limN12N+1[1+n=1N(14)n]=limN12N+1[1+14(1(14)N)114]\displaystyle = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\bigg[1 + \sum_{n=1}^{N} \left(\frac{1}{4}\right)^{n}\bigg] = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\bigg[1 + \frac{\frac{1}{4}\left(1 - \left(\frac{1}{4}\right)^N\right)}{1 - \frac{1}{4}}\bigg]


=13limN12N+1[4(14)N]=13(40)=0\displaystyle = \frac{1}{3}\lim_{N \rightarrow \infty}\frac{1}{2N + 1}\left[4 - \left(\frac{1}{4}\right)^N\right] = \frac{1}{3}\left(\frac{4}{\infty} - \frac{0}{\infty}\right) = 0
 
(d) x1[n]=(12)nu[n]\displaystyle \bold{(d)} \ x_1[n] = \left(\frac{1}{2}\right)^n u[n]

Ex=n=x1[n]2=n=(12)nu[n]2\displaystyle E_x = \sum_{n=-\infty}^{\infty} |x_1[n]|^2 = \sum_{n=-\infty}^{\infty} \bigg|\left(\frac{1}{2}\right)^n u[n]\bigg|^2


=n=0(12)2n=n=0(14)n=1114=14414\displaystyle = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^{2n} = \sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^{n} = \frac{1}{1 - \frac{1}{4}} = \frac{1}{\frac{4}{4} - \frac{1}{4}}


=441=43\displaystyle = \frac{4}{4 - 1} = \textcolor{blue}{\frac{4}{3}}
 
(e) x2[n]=ej(π/2n+π/8)\displaystyle \bold{(e)} \ x_2[n] = e^{j(\pi/2n + \pi/8)}

Px=limN12N+1n=NNx2[n]2=limN12N+1n=NNej(π/2n+π/8)2\displaystyle P_x = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} |x_2[n]|^2 = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} \bigg|e^{j(\pi/2n + \pi/8)}\bigg|^2


=limN12N+1n=NN1=limN12N+1[2N+1]=1\displaystyle = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\sum_{n=-N}^{N} 1 = \lim_{N \rightarrow \infty}\frac{1}{2N + 1}\bigg[2N + 1\bigg] = \textcolor{blue}{1}
 
(e) x2[n]=ej(π/2n+π/8)\displaystyle \bold{(e)} \ x_2[n] = e^{j(\pi/2n + \pi/8)}

Ex=n=x2[n]2=n=ej(π/2n+π/8)2\displaystyle E_x = \sum_{n=-\infty}^{\infty} |x_2[n]|^2 = \sum_{n=-\infty}^{\infty} \bigg|e^{j(\pi/2n + \pi/8)}\bigg|^2


=n=1=\displaystyle = \sum_{n=-\infty}^{\infty} 1 = \textcolor{blue}{\infty}
 
(f) x3[n]=cosπ4n\displaystyle \bold{(f)} \ x_3[n] = \cos \frac{\pi}{4}n

Px=limN12N+1n=NNx3[n]2=limN12N+1n=NNcosπ4n2\displaystyle P_x = \lim_{N \rightarrow \infty}\frac{1}{2N + 1} \sum_{n = -N}^{N} |x_3[n]|^2 = \lim_{N \rightarrow \infty}\frac{1}{2N + 1} \sum_{n = -N}^{N} \left|\cos \frac{\pi}{4}n\right|^2


=limN12N+1n=NNcos2π4n=limN12N+1n=NN12[1+cosπn2]\displaystyle = \lim_{N \rightarrow \infty}\frac{1}{2N + 1} \sum_{n = -N}^{N} \cos^2 \frac{\pi}{4}n = \lim_{N \rightarrow \infty}\frac{1}{2N + 1} \sum_{n = -N}^{N} \frac{1}{2}\bigg[1 + \cos \frac{\pi n}{2}\bigg]


=limN12N+1[2N+12+12n=NNvalue between {1,1}]\displaystyle = \lim_{N \rightarrow \infty}\frac{1}{2N + 1} \bigg[\frac{2N + 1}{2} + \frac{1}{2}\sum_{n = -N}^{N} \text{value between} \ \{-1,1\}\bigg]


=limN[12+finite number4N+2]=12+0=12\displaystyle = \lim_{N \rightarrow \infty}\bigg[\frac{1}{2} + \frac{\text{finite number}}{4N + 2}\bigg] = \frac{1}{2} + 0 = \textcolor{blue}{\frac{1}{2}}
 
(f) x3[n]=cosπ4n\displaystyle \bold{(f)} \ x_3[n] = \cos \frac{\pi}{4}n

Ex=n=x3[n]2=n=cosπ4n2\displaystyle E_x = \sum_{n = -\infty}^{\infty} |x_3[n]|^2 = \sum_{n = -\infty}^{\infty} \left|\cos \frac{\pi}{4}n\right|^2


=n=cos2π4n=n=12[1+cosπn2]=\displaystyle = \sum_{n = -\infty}^{\infty} \cos^2 \frac{\pi}{4}n = \sum_{n = -\infty}^{\infty} \frac{1}{2}\bigg[1 + \cos\frac{\pi n}{2}\bigg] = \textcolor{blue}{\infty}
 
Top