22. Consider a rectangle in the xy-plane with its lower-left vertex at the origin and its upper-right vertex on the graph of \(\displaystyle \, y\, =\, \sqrt{\vphantom{ [ }6\, -\, x\,}.\, \) What is the maximum area of such a rectangle? (image here:
< link to objectionable page removed >)
A. \(\displaystyle \sqrt{\vphantom{ [ }6\,}\). . .B. 4. . .C. \(\displaystyle 3\sqrt{\vphantom{ [ }3\,}\). . .D. \(\displaystyle 4\sqrt{\vphantom{ [ }2\,}\). . .E. \(\displaystyle 4\sqrt{\vphantom{ [ }6\,}\)
So I'm multiplying the contraint and the area formula, x(6-x)^(1/2), but finding the derivative is hard
Answer is D
< link to objectionable page removed >)
A. \(\displaystyle \sqrt{\vphantom{ [ }6\,}\). . .B. 4. . .C. \(\displaystyle 3\sqrt{\vphantom{ [ }3\,}\). . .D. \(\displaystyle 4\sqrt{\vphantom{ [ }2\,}\). . .E. \(\displaystyle 4\sqrt{\vphantom{ [ }6\,}\)
So I'm multiplying the contraint and the area formula, x(6-x)^(1/2), but finding the derivative is hard
Answer is D
Last edited by a moderator: