\(\displaystyle \displaystyle
\eqalign{ & Let \hspace{0.3cm} I = \int_0^a {{{{{(a - x)}^{n - 1}}} \over {{{(a + x)}^{n + 1}}}}} dx,where\hspace{0.2cm} a > 0,\hspace{0.2cm}n \in {{\Bbb N}^*} \cr
& \left. A \right){1 \over {2na}};\left. B \right){n \over {2a}};\left. C \right){a \over {2n}};\left. D \right)2an;\left. E \right){{2a} \over n} \cr
& a + x = y \cr
& a - x = 2a - y \cr
& dx = dy \cr
& x = a \to y = 2a \cr
& x = 0 \to y = a \cr
& I = \int_a^{2a} {{{{{(2a - y)}^{n - 1}}} \over {{{(y)}^{n + 1}}}}} dy = \int_a^{2a} {{{\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{y^k}{{( - 1)}^k}} } \over {{{(y)}^{n + 1}}}}} dy = \int_a^{2a} {\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{y^{k - n - 1}}{{( - 1)}^k}} } dx \cr
& I = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} \int_0^{2a} {{y^{k - 1 - n}}} dy = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} \cdot \left. {{{{y^{k - n}}} \over {k - n}}} \right|_a^{2a} \cr
& I = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} {{{{(2a)}^{k - n}} - {a^{k - n}}} \over {k - n}} = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{2^{n - 1 - k}}{{a^{n - 1 - k + k - n}}}{{( - 1)}^k}} \cdot {{{2^{k - n}} - 1} \over {k - n}} \cr
& I = {1 \over a}\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2)}^{n - 1 - k}}{{( - 1)}^k}{{{2^{k - n}} - 1} \over {k - n}}} = ... \cr}
\)
Any ideas on what to do next? Any help is welcome.
EDIT: Solved at the end.
\eqalign{ & Let \hspace{0.3cm} I = \int_0^a {{{{{(a - x)}^{n - 1}}} \over {{{(a + x)}^{n + 1}}}}} dx,where\hspace{0.2cm} a > 0,\hspace{0.2cm}n \in {{\Bbb N}^*} \cr
& \left. A \right){1 \over {2na}};\left. B \right){n \over {2a}};\left. C \right){a \over {2n}};\left. D \right)2an;\left. E \right){{2a} \over n} \cr
& a + x = y \cr
& a - x = 2a - y \cr
& dx = dy \cr
& x = a \to y = 2a \cr
& x = 0 \to y = a \cr
& I = \int_a^{2a} {{{{{(2a - y)}^{n - 1}}} \over {{{(y)}^{n + 1}}}}} dy = \int_a^{2a} {{{\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{y^k}{{( - 1)}^k}} } \over {{{(y)}^{n + 1}}}}} dy = \int_a^{2a} {\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{y^{k - n - 1}}{{( - 1)}^k}} } dx \cr
& I = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} \int_0^{2a} {{y^{k - 1 - n}}} dy = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} \cdot \left. {{{{y^{k - n}}} \over {k - n}}} \right|_a^{2a} \cr
& I = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2a)}^{n - 1 - k}}{{( - 1)}^k}} {{{{(2a)}^{k - n}} - {a^{k - n}}} \over {k - n}} = \sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{2^{n - 1 - k}}{{a^{n - 1 - k + k - n}}}{{( - 1)}^k}} \cdot {{{2^{k - n}} - 1} \over {k - n}} \cr
& I = {1 \over a}\sum\limits_{k = 0}^{n - 1} {C_{n - 1}^k{{(2)}^{n - 1 - k}}{{( - 1)}^k}{{{2^{k - n}} - 1} \over {k - n}}} = ... \cr}
\)
Any ideas on what to do next? Any help is welcome.
EDIT: Solved at the end.
Last edited: