Tried the following proof by cases:
Prove: (P∧Q)∨(P∧R)⟹P∧(Q∨R)Proof:
1)(P∧Q)∨(P∧R) Assumption
2)(P∧Q)Hypothesis
3)P2, Conjuncion elem.
4)Q2, Conjunction elem.
5)Q∨R4,Disjunction introduction
6)P∧(Q∨R)3,5 Conjuction Introduction
7)(P∧Q)⟹P∧(Q∨R)2 to 6 by conditional proof
8)P∧RHypothesis
9)R8,Conjuction elem.
10)R∨Q9,Disjunction Introduction
11)Q∨R10, commutativity
12P∧(Q∨R)3,11 conjuction Introduction
13)P∧R⟹P∧(Q∨R) 8 to 12 by conditional proof
14)P∧(Q∨R)1,7,13 using proof by cases
But somebody insisted that i did a fatal mistake somewhere
where
12
Prove: (P∧Q)∨(P∧R)⟹P∧(Q∨R)Proof:
1)(P∧Q)∨(P∧R) Assumption
2)(P∧Q)Hypothesis
3)P2, Conjuncion elem.
4)Q2, Conjunction elem.
5)Q∨R4,Disjunction introduction
6)P∧(Q∨R)3,5 Conjuction Introduction
7)(P∧Q)⟹P∧(Q∨R)2 to 6 by conditional proof
8)P∧RHypothesis
9)R8,Conjuction elem.
10)R∨Q9,Disjunction Introduction
11)Q∨R10, commutativity
12P∧(Q∨R)3,11 conjuction Introduction
13)P∧R⟹P∧(Q∨R) 8 to 12 by conditional proof
14)P∧(Q∨R)1,7,13 using proof by cases
But somebody insisted that i did a fatal mistake somewhere
where
12