Below is the half way proof that I have done. I did not know how to continue from here. Can anyone help? Many thanks.
i) Proof that (1-sin2A)/(1+cos2A) = 1/2 (1+tanA)^2
LHS: (1-2sinAcosA)/(1+2cos^2A-1)
= (1-2sinAcosA)/2cos^2A
= 1/2cos^2A - 2sinAcosA/2cos^2A
= 1/2sec^2A - sinA/cosA
= 1/2(tan^2A+1) - tanA
ii) Proof that cosec x (1 + cosx) + 1/cosec(1+cosx) = 2cosecx
LHS: 1/sinx + cos x / sin x + 1/cosec(1+cosx)
= (1 + cosx) /sin x + 1/sin (1+cosx)
i) Proof that (1-sin2A)/(1+cos2A) = 1/2 (1+tanA)^2
LHS: (1-2sinAcosA)/(1+2cos^2A-1)
= (1-2sinAcosA)/2cos^2A
= 1/2cos^2A - 2sinAcosA/2cos^2A
= 1/2sec^2A - sinA/cosA
= 1/2(tan^2A+1) - tanA
ii) Proof that cosec x (1 + cosx) + 1/cosec(1+cosx) = 2cosecx
LHS: 1/sinx + cos x / sin x + 1/cosec(1+cosx)
= (1 + cosx) /sin x + 1/sin (1+cosx)