Hello, RBF kernel: k(xi,xj)=φ(xi)Tφ(xj)=e−2σ2∣∣xi−xj∣∣2 and the mapping function φ is unknown but I know that it maps some x into an infinite-dimensional space, I have to prove that subspace of φ would map to R∞ with σ=2
k(xi,xj)=e−2σ2∣∣xi−xj∣∣2=e−4∣∣xi−xj∣∣2
=e−4(xi−xj)T(xi−xj)
=e−4<xi−xj,xi−xj>
=e−4<xi,xi−xj>−<xj,xi−xj>
=e−4<xi,xi>−<xi,xj>−<xj,xi>+<xj,xj>
=e−4∣∣xi∣∣2+∣∣xj∣∣2−2<xi,xj>
=e−4∣∣xi∣∣2+∣∣xj∣∣2⋅e−4−2(xiTxj)
=e−4∣∣xi∣∣2⋅e−4∣∣xj∣∣2⋅e−4−2(xiTxj)
=e−4(xiTxi)⋅e−4(xjTxj)⋅e−4−2(xiTxj)
is it correct and what is the next step? I have to apply ex=i=0∑∞i!xi and kd(xi,xj)=(xiTxj)d somewhen
I guess for first term:
=e−4(xiTxi)=i=0∑∞i!−4(xiTxi)i= and this is not correct I think
k(xi,xj)=e−2σ2∣∣xi−xj∣∣2=e−4∣∣xi−xj∣∣2
=e−4(xi−xj)T(xi−xj)
=e−4<xi−xj,xi−xj>
=e−4<xi,xi−xj>−<xj,xi−xj>
=e−4<xi,xi>−<xi,xj>−<xj,xi>+<xj,xj>
=e−4∣∣xi∣∣2+∣∣xj∣∣2−2<xi,xj>
=e−4∣∣xi∣∣2+∣∣xj∣∣2⋅e−4−2(xiTxj)
=e−4∣∣xi∣∣2⋅e−4∣∣xj∣∣2⋅e−4−2(xiTxj)
=e−4(xiTxi)⋅e−4(xjTxj)⋅e−4−2(xiTxj)
is it correct and what is the next step? I have to apply ex=i=0∑∞i!xi and kd(xi,xj)=(xiTxj)d somewhen
I guess for first term:
=e−4(xiTxi)=i=0∑∞i!−4(xiTxi)i= and this is not correct I think
Last edited: