Prove: Gaussian RBF kernel would map into infinity space

Sauraj

New member
Joined
Jul 6, 2019
Messages
39
Hello, RBF kernel: k(xi,xj)=φ(xi)Tφ(xj)=exixj22σ2\displaystyle k(x_i , x_j ) = φ(x_i )^Tφ(x_j ) = e^{-\frac{||x_i-x_j||^2}{2\sigma^2}} and the mapping function φ is unknown but I know that it maps some x into an infinite-dimensional space, I have to prove that subspace of φ would map to R\displaystyle \mathbb{R}^∞ with σ=2\displaystyle \sigma = \sqrt{2}

k(xi,xj)=exixj22σ2=exixj24\displaystyle k(x_i , x_j ) = e^{-\frac{||x_i-x_j||^2}{2\sigma^2}} = e^{-\frac{||x_i-x_j||^2}{4}}

=e(xixj)T(xixj)4\displaystyle = e^{-\frac{(x_i-x_j)^T(x_i-x_j)}{4}}

=e<xixj,xixj>4\displaystyle = e^{-\frac{<x_i-x_j, x_i-x_j>}{4}}

=e<xi,xixj><xj,xixj>4\displaystyle = e^{-\frac{<x_i,x_i−x_j> − <x_j,x_i−x_j>}{4}}

=e<xi,xi><xi,xj><xj,xi>+<xj,xj>4\displaystyle = e^{-\frac{<x_i,x_i> − <x_i,x_j> − <x_j,x_i>+<x_j,x_j>}{4}}

=exi2+xj22<xi,xj>4\displaystyle = e^{-\frac{||x_i||^2 + ||x_j||^2 − 2 <x_i,x_j>}{4}}

=exi2+xj24e2(xiTxj)4\displaystyle = e^{-\frac{||x_i||^2 + ||x_j||^2}{4}} \cdot e^{-\frac{−2(x_i^Tx_j)}{4}}

=exi24exj24e2(xiTxj)4\displaystyle = e^{-\frac{||x_i||^2}{4}} \cdot e^{-\frac{||x_j||^2}{4}} \cdot e^{-\frac{−2(x_i^Tx_j)}{4}}

=e(xiTxi)4e(xjTxj)4e2(xiTxj)4\displaystyle = e^{-\frac{(x_i^Tx_i)}{4}} \cdot e^{-\frac{(x_j^Tx_j)}{4}} \cdot e^{-\frac{−2(x_i^Tx_j)}{4}}

is it correct and what is the next step? I have to apply ex=i=0xii!\displaystyle e^x = \sum\limits_{i=0}^{\infty}\frac{x^i}{i!} and kd(xi,xj)=(xiTxj)d\displaystyle k_d(x_i,x_j) = (x_i^Tx_j)^d somewhen

I guess for first term:
=e(xiTxi)4=i=0(xiTxi)4ii!=\displaystyle = e^{-\frac{(x_i^Tx_i)}{4}} = \sum\limits_{i=0}^{\infty}\frac{{-\frac{(x_i^Tx_i)}{4}}^i}{i!} = and this is not correct I think
 
Last edited:
Taking the Taylor expansion of the third factor,
e2(xiTxj)4=e(xiTxj)2=i=0(xiTxj)i2i!=i=0(xiTxj)i2i!=2+(xiTxj)2+(xiTxj)24+...\displaystyle e^{-\frac{−2(x_i^Tx_j)}{4}} = e^{\frac{(x_i^Tx_j)}{2}} = \sum\limits_{i=0}^{\infty}\frac{ \frac{(x_i^Tx_j)^i}{2}}{i!} = \sum\limits_{i=0}^{\infty}\frac{(x_i^Tx_j)^i}{2i!} = 2 + \frac{(x_i^Tx_j)}{2} + \frac{(x_i^Tx_j)^2}{4} + ... now we see that RBF kernel is formed by taking an infinite sum over polynomial kernels. Is it correct?
 
Top