Prove ((sec(x)-tan(x))^2 + 1)/csc(x)(sec(x)-tan(x)) = 2tan(x

soulofeternity

New member
Joined
Oct 27, 2006
Messages
9
In order to prove the statement true, you must simplify one side down until you have the same thing on each side (I hope that made sense . . .). If that didn't make sense, it just means simplify the left side to 2tan(x).

((sec(x)-tan(x))^2 + 1)/ csc(x)(sec(x)-tan(x)) = 2tan(x)
 
[(secx - tanx)<sup>2</sup> + 1]/[cscx(secx - tanx)] =

(sec<sup>2</sup>x - 2secxtanx + tan<sup>2</sup>x + 1)/[cscx(secx - tanx)] =

(2sec<sup>2</sup>x - 2secxtanx)/[cscx(secx - tanx)] =

2secx(secx - tanx)/[cscx(secx - tanx)] =

2secx/cscx =

2sinx/cosx =

2tanx
 
Re: Proving Identities

Hello, soulofeternity!

[sec(x)tan(x)]2+1csc(x)[sec(x)tan(x)]  =  2tan(x)\displaystyle \:\frac{[\sec(x)\,-\,\tan(x)]^2\,+\,1}{\csc(x)[\sec(x)\,-\,\tan(x)]}\; =\; 2\tan(x)

The numerator is: [sec(x)tan(x)]2+1\displaystyle \:[\sec(x)\,-\,\tan(x)]^2\,+\,1

. . =sec2(x)2sec(x)tan(x)+tan2(x)+1\displaystyle =\:\sec^2(x)\,-\,2\sec(x)\tan(x)\,+\,\underbrace{\tan^2(x)\,+\,1}
. . =sec2(x)    2sec(x)tan(x)  +  sec2(x)\displaystyle = \:\sec^2(x)\;-\;2\sec(x)\tan(x)\;+\;\sec^2(x)

. . =2sec2(x)2sec(x)tan(x)\displaystyle = \:2\sec^2(x)\,-\,2\sec(x)\tan(x)

. . =  2sec(x)[sec(x)tan(x)]\displaystyle = \;2\sec(x)\cdot[\sec(x)\,-\,\tan(x)]


The function becomes: \(\displaystyle \L\:\frac{2\sec(x)\cdot[\sec(x)\,-\,\tan(x)]}{\csc(x)\cdot[\sec(x)\,-\,\tan(x)] } \:=\:\frac{2\sec(x)}{\csc(x)} \:=\:\frac{2\sin(x)}{\cos(x)}\)=2tan(x)\displaystyle \:=\:2\tan(x)


Too fast for me, skeeter!
 
Top