Prove Trig Identity: sin(a+b)/sina+sinb=sina-sinb/sin(a-b)

kate93

New member
Joined
Feb 17, 2009
Messages
2
prove the following identity:

sin(a+b) / sina+sinb = sina-sinb / sin(a-b)

Any help would be great!!
-Thanks
 
Re: Proving Trig Identities HELP!!!!

sin(a+b) / sina+sinb = sina-sinb / sin(a-b) means sin(a+b)sina+sinb=sinasinbsin(ab)\displaystyle \frac{\sin(a+b)}{\sin a}+\sin b = \sin a - \frac{\sin b}{\sin (a-b)}.
Please use parenthesis to clarify.
 
Re: Proving Trig Identities HELP!!!!

it means:

sin(a+b) / (sina+sinb) = (sina-sinb) / sin(a-b)

Thanks :)
 
Top