Proving an inequality w/ locally Lipschitz function

lancer6238

New member
Joined
Apr 4, 2007
Messages
3
Hi all, I need help proving an inequality.

Suppose the function f(t,x) is locally Lipschitz on the domain GR2\displaystyle G \subset \mathbb{R^2}, that is, f(t,x1)f(t,x2)k(t)x1x2\displaystyle |f(t,x_1)-f(t,x_2)| \leq k(t) |x_1 - x_2| for all (t,x1),(t,x2)G\displaystyle (t, x_1),(t,x_2) \in G. Define I = (a,b) and ϕ1(t)\displaystyle \phi_1(t) and ϕ2(t)\displaystyle \phi_2(t) are 2 continuous functions on I. Assume that, if (t,ϕi(t))G\displaystyle (t, \phi_i(t)) \in G, then the function f(t,ϕi(t))\displaystyle f(t, \phi_i(t)) is an integrable function on I for i = 1, 2. Suppose that for i = 1,2 and tI\displaystyle t \in I,

ϕi(t)=ϕi(t0)+t0tf(s,ϕi(s))ds+Ei(t)\displaystyle \phi_i(t) = \phi_i(t_0) + \int^t_{t_0} f(s, \phi_i(s))\,ds + E_i(t)

and ϕ1(t0)ϕ2(t0)δ\displaystyle |\phi_1(t_0) - \phi_2(t_0)| \leq \delta

for some constant δ\displaystyle \delta. Show that for all t(t0,b)\displaystyle t \in (t_0, b) we have

ϕ1(t)ϕ2(t)δet0tk(s)ds+E(t)+t0tE(s)k(s)et0sk(r)drds\displaystyle |\phi_1(t) - \phi_2(t)| \leq \delta e^{\int^t_{t_0} k(s) \,ds} + E(t) + \int^t_{t_0} E(s) k(s) e^{\int^s_{t_0} k(r) \,dr} \,ds

where E(t)=E1(t)+E2(t)\displaystyle E(t) = |E_1(t)| + |E_2(t)|

I managed to get δet0tk(s)ds\displaystyle \delta e^{\int^t_{t_0} k(s) \,ds} using triangle inequality and Gronwall's inequality, but I cannot seem to get the last 2 terms in the inequality.

Here's what I did:

ϕ1(t)ϕ2(t)\displaystyle |\phi_1(t) - \phi_2(t)|
=ϕ1(t0)+t0tf(s,ϕ1(s))ds+E1(t)ϕ2(t0)t0tf(s,ϕ2(s))dsE2(t)\displaystyle = |\phi_1(t_0) + \int^t_{t_0} f(s, \phi_1(s)) \,ds + E_1(t) - \phi_2(t_0) - \int^t_{t_0} f(s, \phi_2(s)) \,ds - E_2(t)|
=ϕ1(t0)ϕ2(t0)+t0tf(s,ϕ1(s))dst0tf(s,ϕ2(s))ds+E1(t)E2(t)\displaystyle = |\phi_1(t_0) - \phi_2(t_0) + \int^t_{t_0} f(s, \phi_1(s)) \,ds - \int^t_{t_0} f(s, \phi_2(s)) \,ds + E_1(t) - E_2(t)|
\(\displaystyle \leq |\phi_1(t_0) - \phi_2(t_0)| + |\int^t_{t_0} f(s, \phi_1(s)) }ds - \int^t_{t_0} f(s, phi_2(s)) \,ds + E_1(t) - E_2(t)|\)
δ+E1(t)E2(t)+t0tf(s,ϕ1(s))f(s,ϕ2(s))ds\displaystyle \leq \delta + |E_1(t) - E_2(t)| + |\int^t_{t_0} f(s, \phi_1(s)) - f(s, \phi_2(s)) \,ds|
δ+E1(t)+E2(t)+t0tf(s,ϕ1(s))f(s,ϕ2(s))ds\displaystyle \leq \delta + |E_1(t) + E_2(t)| + \int^t_{t_0} |f(s, \phi_1(s)) - f(s, \phi_2(s))| \,ds
δ+E1(t)+E2(t)+t0tk(s)ϕ1(s)ϕ2(s)ds\displaystyle \leq \delta + |E_1(t)| + |E_2(t)| + \int^t_{t_0} k(s)|\phi_1(s) - \phi_2(s)| \, ds
(δ+E(t))et0tk(s)ds\displaystyle \leq (\delta + E(t)) e^{\int^t_{t_0} k(s)\, ds}
\(\displaystyle = \delta e^{\int^t_{t_0} k(s) \, ds} + E(t) e^{\int^t_{t_0} k(s) \, ds\)

This is where I got stuck.

Please help.

Thank you.

Regards,
Rayne
 
Top