pythagorean identities

1+cos theta/ cos theta = sec theta+1

Hi Kyle:

First, some comments about notation

The numerator on the left-hand side is 1 + cos(θ)

You must show this, by typing grouping symbols around the numerator


On the right-hand side, the input to the secant function is not "theta+1", but, looks like it could be as typed.

Function notation eliminates this ambiguity


[1 + cos(theta)]/cos(theta) = sec(theta) + 1


To prove that this equation is an identity, you need to show that each side can be rewritten as the same expression.

If you rewrite the expression on the right-hand side in terms of cosine, what do you get?

Now, can you simplify the left-hand side algebraically, to match what you just rewrote for the right-hand side?


If you get stuck, please show us what you've tried so far. Cheers :cool:
 
Top