Post Edited
\(\displaystyle f(x) = \dfrac{8x}{1 - \cot(x)}\)
Using Quotient Rule:
Given: \(\displaystyle \dfrac{f(x)}{g(x)}\)
\(\displaystyle f(x) = \dfrac{g(x)[f'(x)] - f(x)[g'(x)]}{g^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](\dfrac{d}{dx} 8x) - (8x)[\dfrac{d}{dx}1 - \cot(x)]}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](8) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](8) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{8 - 8 \cot(x) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
- Answer
\(\displaystyle f(x) = \dfrac{8x}{1 - \cot(x)}\)
Using Quotient Rule:
Given: \(\displaystyle \dfrac{f(x)}{g(x)}\)
\(\displaystyle f(x) = \dfrac{g(x)[f'(x)] - f(x)[g'(x)]}{g^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](\dfrac{d}{dx} 8x) - (8x)[\dfrac{d}{dx}1 - \cot(x)]}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](8) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{[1 - \cot(x)](8) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
\(\displaystyle f'(x) = \dfrac{8 - 8 \cot(x) - 8x \csc^{2}(x)}{(1 - \cot(x))^{2}}\)
Last edited: