Hello, ree!
When multiplying radicals, rational exponents make it far easier.
Example: .\(\displaystyle \sqrt[3]{x}\cdot\sqrt[4]{x}\)
Since we cannot combine "unlike" roots (only "like" roots),
. . we must perform some severe manipulations.
. . \(\displaystyle \sqrt[3]{x}\cdot\sqrt[4]{x} \;=\;\sqrt[12]{x^4}\cdot\sqrt[12]{x^3} \;=\;\sqrt[12]{x^4\cdot x^3} \;=\;\sqrt[12]{x^7}\)
Wiith rational exponents, we have:
. . \(\displaystyle x^{\frac{1}{3}}\cdot x^{\frac{1}{4}} \:=\:x^{\frac{1}{3}+\frac{1}{4}} \:=\: x^{\frac{7}{12}\)