The problem:
A point Q starts at Q[sub:i773cbkc]0[/sub:i773cbkc] = (1, 0) and moves along the upper semicircle x[sup:i773cbkc]2[/sup:i773cbkc] + y[sup:i773cbkc]2[/sup:i773cbkc] = 1 with dx/dt = – 2. When x = 1/sqrt(2), at what rate is the x-intercept of the tangent line to the curve at Q increasing?
My work so far:
The slope of the tangent line is dy/dx where y = (1 - x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]1/2[/sup:i773cbkc].
dy/dx = d[(1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]1/2[/sup:i773cbkc]]/dx
= 1/2 · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc] · d(1 – x[sup:i773cbkc]2[/sup:i773cbkc])/dx
= 1/2 · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc] · (– 2x)
= – x · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc]
When x = 1/sqrt(2), y = 1/sqrt(2), and the slope of the tangent line is - 1.
The equation of the tangent line is y - 1/sqrt(2) = (- 1)(x - 1/sqrt(2). The x-intercept is the solution to this equation when y = 0.
I'm not sure where to go next with this one.
A point Q starts at Q[sub:i773cbkc]0[/sub:i773cbkc] = (1, 0) and moves along the upper semicircle x[sup:i773cbkc]2[/sup:i773cbkc] + y[sup:i773cbkc]2[/sup:i773cbkc] = 1 with dx/dt = – 2. When x = 1/sqrt(2), at what rate is the x-intercept of the tangent line to the curve at Q increasing?
My work so far:
The slope of the tangent line is dy/dx where y = (1 - x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]1/2[/sup:i773cbkc].
dy/dx = d[(1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]1/2[/sup:i773cbkc]]/dx
= 1/2 · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc] · d(1 – x[sup:i773cbkc]2[/sup:i773cbkc])/dx
= 1/2 · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc] · (– 2x)
= – x · (1 – x[sup:i773cbkc]2[/sup:i773cbkc])[sup:i773cbkc]- 1/2[/sup:i773cbkc]
When x = 1/sqrt(2), y = 1/sqrt(2), and the slope of the tangent line is - 1.
The equation of the tangent line is y - 1/sqrt(2) = (- 1)(x - 1/sqrt(2). The x-intercept is the solution to this equation when y = 0.
I'm not sure where to go next with this one.