\(\displaystyle \lim n \rightarrow \infty[\dfrac{a_{n + 1}}{a_{n}}] = L\)
Applying this formula to
Summation sign with \(\displaystyle \infty\) on top and \(\displaystyle n = 1\) on the bottom \(\displaystyle \dfrac{4^{n}}{n!}\)
\(\displaystyle \lim n \rightarrow \infty[\dfrac{\dfrac{4^{n+1}}{(n + 1)^{1}}}{\dfrac{4^{n}}{n!}}]\)
Any hints on what is going on here?
Applying this formula to
Summation sign with \(\displaystyle \infty\) on top and \(\displaystyle n = 1\) on the bottom \(\displaystyle \dfrac{4^{n}}{n!}\)
\(\displaystyle \lim n \rightarrow \infty[\dfrac{\dfrac{4^{n+1}}{(n + 1)^{1}}}{\dfrac{4^{n}}{n!}}]\)
Last edited: