\(\displaystyle \sum_{n = 1}^{\infty} \dfrac{(-1)^{n} 2^{3n}}{(2n)!}\)
\(\displaystyle \lim n \rightarrow \infty[\dfrac{\dfrac{ 2^{3n + 1}}{(2n + 1)!}}{\dfrac{ 2^{3n}}{(2n)!}}]\)
\(\displaystyle \lim n \rightarrow \infty[(\dfrac{ 2^{3n + 1}}{(2n + 1)!})(\dfrac{ (2n)! }{ 2^{3n}})]\)
How to do algebra here, with factorials etc..
\(\displaystyle \lim n \rightarrow \infty[\dfrac{\dfrac{ 2^{3n + 1}}{(2n + 1)!}}{\dfrac{ 2^{3n}}{(2n)!}}]\)
\(\displaystyle \lim n \rightarrow \infty[(\dfrac{ 2^{3n + 1}}{(2n + 1)!})(\dfrac{ (2n)! }{ 2^{3n}})]\)
Last edited: