[1/(x + Y)^2 - 1/x^2]/Y This is the original problem
(x^2)__1___ - _1_ (x+y)^2
(x^2) (x+y)^2 (x+y)^2
___________________________
y
x^2-(x+y)^2
_____________
(x^2)(x+y)^2
_______________
y
x^2-(x+y)(x+y)
______________
(x^2)(x+y)^2
__________________
y
x^2-x^2-2xy-y^2
______________________
(x^2)(x+y)^2
____________________
y
-2xy-y^2
_____________
(x^2)(x+y)^2
__________
y
-2xy-y^2 * (1/y)
__________
(x^2)(x+y)^2
-2xy-y^2
_____________
(x^2 y)(x+y)^2
My answer is
-2-y^2
x(x+y)^2
(x^2)__1___ - _1_ (x+y)^2
(x^2) (x+y)^2 (x+y)^2
___________________________
y
x^2-(x+y)^2
_____________
(x^2)(x+y)^2
_______________
y
x^2-(x+y)(x+y)
______________
(x^2)(x+y)^2
__________________
y
x^2-x^2-2xy-y^2
______________________
(x^2)(x+y)^2
____________________
y
-2xy-y^2
_____________
(x^2)(x+y)^2
__________
y
-2xy-y^2 * (1/y)
__________
(x^2)(x+y)^2
-2xy-y^2
_____________
(x^2 y)(x+y)^2
My answer is
-2-y^2
x(x+y)^2
Last edited: