pooh27 said:
mark has 300 feet of lumber to frame a rectangular patio (the perimeter of a rectangle is 2 times length plus 2 times width). He wants to maximize the area of his patio (area of a retangle is lenght times width). What should the dimensions of the patio be? Show how the maximum area of the patio is calculated from the algebraic equations.
You do not say whether the house itself will be one edge of the restngular patio.
Considering all rectangles with a given perimeter, the square encloses the greatest area.
Proof: Consider a square of dimensions x by x, the area of which is x^2. Adjusting the dimensions by adding a to one side and subtracting a from the other side results in an area of (x + a)(x - a) = x^2 - a^2. Thus, however small the dimension "a" is, the area of the modified rectangle is always less than the square of area x^2.
Considering all rectangles with a given perimeter, the square encloses the greatest area.
Proof: Consider a square of dimensions x by x, the area of which is x^2. Adjusting the dimensions by adding a to one side and subtracting a from the other side results in an area of (x + a)(x - a) = x^2 - a^2. Thus, however small the dimension "a" is, the area of the modified rectangle is always less than the square of area x^2.
Considering all rectangles with the same area, the square results in the smallest perimeter for a given area.
Considering all rectangles with a given perimeter, one side being another straight boundry, the 3 sided
rectangle enclosing the greatest area has a length to width ratio of 2:1