Reimann sum solution check

bcddd214

Junior Member
Joined
May 16, 2011
Messages
102
lim(n??)??_(i=1)^n?(1+2i/n)^3 (2/n) ?
=2/n ?_(i=1)^n?(1+2i/n)(1+2i/n)(1+2i/n) ?
2/n ?_(i=1)^n?(1+4i/n+(2i^2)/n^2 )(1+2i/n) ?
2/n ?_(i=1)^n?(1+2i/n+4i/n+(2i^2)/n^2 +(8i^2)/n^2 +(4i^3)/n^3 ) ?
2/n ?_(i=1)^n?(1+6i/2n+(10i^2)/(2n^2 )+(4i^3)/n^3 ) ?
2/n (?_(i=1)^n?1+?_(i=1)^n 6i/2n+?_(i=1)^n (10i^2)/(2n^2 )+?_(i=1)^n (4i^3)/n^3 ?)
2/n (?_(i=1)^n?1+3/n ?_(i=1)^n i+5/n^2 ?_(i=1)^n i^2 +4/n^3 ?_(i=1)^n i^3 ?)
2/n (4/n^3 [(n^2 (n+1)^2)/4]+5/n^2 [n(n+1)(2n+1)/6]+3/n [n(n+1)/2]+1n)
8/4 [(n^2 (n+1)^2)/n^4 ]+10/6 [n(n+1)(2n+1)/n^3 ]+6/2 [n(n+1)/n^2 ]+2
24/12+20/12+36/12+24/12=104/12=52/6

All better now?
 
I doubt if anyone wants to blunder through that. Do not copy and paste word documents. They come out looking like Babylonian cuneiform.
 
galactus said:
I doubt if anyone wants to blunder through that. Do not copy and paste word documents. They come out looking like Babylonian cuneiform.

There, fixed it.
 
Not really. When math is written like this it is laborious to read through. Try it in Latex. Have you noticed how math can be displayed in a nice format?. Interested?. Click on 'quote' at the upper right corner to see how I done this.
I took the time to convert your post. I had a rough time interpreting the next to last line. Please correct me if it is not correct. While I was doing it, I did notice a fraction addition error. \(\displaystyle \frac{2i}{n}+\frac{4i}{n}\neq \frac{6i}{2n}\).
As you probably know, this is not how you add fraction. It should be \(\displaystyle \frac{2i}{n}+\frac{4i}{n}=\frac{6i}{n}\)


\(\displaystyle \lim_{n\to \infty}\sum_{i=1}^{n}\left(1+\frac{2i}{n}\right)^{3}\cdot \frac{2}{n}\)

\(\displaystyle =\frac{2}{n}\sum_{i=1}^{n}\left(1+\frac{2i}{n}\right)\left(1+\frac{2i}{n}\right)\left(1+\frac{2i}{n}\right)\)

\(\displaystyle \frac{2}{n}\sum_{i=1}^{n}\left(1+\frac{4i}{n}+(\frac{2i^{2}}{n^{2}} )(1+\frac{2i}{n})\right)\)
\(\displaystyle \frac{2}{n}\sum_{i=1}^{n}\left(1+\frac{2i}{n}+\frac{4i}{n}+\frac{2i^{2}}{n^{2}} +\frac{8i^{2}}{n^{2}} +\frac{4i^{3}}{n^{3}} \right)\)

\(\displaystyle \frac{2}{n}\sum_{i=1}^{n}\left(1+\frac{6i}{2n}+\frac{10i^{2}}{2n^{2}}+\frac{4i^{3}}{n^{3}}\right)\)

\(\displaystyle \frac{2}{n}\left(\sum_{i=1}^{n}1+\sum_{i=1}^{n}\frac{61}{2n}+\sum_{i=1}^{n}\frac{10i^{2}}{2n^{2}}+\sum_{i=1}^{n}\frac{4i^{3}}{n^{3}}\right)\)

\(\displaystyle \frac{2}{n}\left(\sum_{i=1}^{n}1+\frac{3}{n}\sum_{i=1}^{n}i+\frac{5}{n^{2}}\sum_{i=1}^{n}i^{2} +\frac{4}{n^{3}}\sum_{i=1}^{n}i^{3}\right)\)

\(\displaystyle \frac{2}{n}\left(\frac{4}{n^{3}}\left[\frac{n^{2}(n+1)^{2}}{4}\right]+\frac{5}{n^{2}}\left[\frac{n(n+1)(2n+1)}{6}\right]+\frac{3}{n}\left[\frac{n(n+1)}{2}\right]+n\right)\)

\(\displaystyle \frac{8}{4}\left[\frac{n^{2}(n+1)^{2}}{n^{4}}\right]+\frac{10}{6}\left[\frac{n(n+1)(2n+1)}{n^{3}}\right]+\frac{6}{2}\left[\frac{n(n+1)}{n^{2}}\right] \left[\frac{n(n+1)}{n^{2}} \right]+2\)

\(\displaystyle \frac{24}{12}+\frac{20}{12}+\frac{36}{12}+\frac{24}{12}=\frac{104}{12}=\frac{52}{6}\)

This Riemann sum represents \(\displaystyle \int_{1}^{3}x^{3}dx\).

Unfortunately, the solution is not \(\displaystyle \frac{52}{6}\). You're aiming for 20.
 
Top