Recall the definition of the Riemann Sum \(\displaystyle S(f;\pi ;\xi)\) for a function \(\displaystyle f:[0,1]\rightarrow \mathbb{R}\).
Let \(\displaystyle f:[0,1]\rightarrow \mathbb{R},\ x\rightarrow \frac{5}{6}x\)[/latex] For the partition \(\displaystyle \pi_n\) of \(\displaystyle [0,1], 0=t_0<t_1<...<t_n,\ t_j\ =\ \frac{5}{n},\ j=0,...,n\) and \(\displaystyle \xi_j =\ \frac{2}{3}t_j\ +\ \frac{1}{3}t_(j+1)\in [t_j,t_(j+1)]\) find \(\displaystyle S(f;\pi_n,\xi)\).
Now Prove \(\displaystyle lim(n\rightarrow infinity)\ of\ S(f;\pi_n,\xi)=\frac{5}{12}\)
Pretty clueless on this question. A walk through on the steps would be nice for the test coming.
Let \(\displaystyle f:[0,1]\rightarrow \mathbb{R},\ x\rightarrow \frac{5}{6}x\)[/latex] For the partition \(\displaystyle \pi_n\) of \(\displaystyle [0,1], 0=t_0<t_1<...<t_n,\ t_j\ =\ \frac{5}{n},\ j=0,...,n\) and \(\displaystyle \xi_j =\ \frac{2}{3}t_j\ +\ \frac{1}{3}t_(j+1)\in [t_j,t_(j+1)]\) find \(\displaystyle S(f;\pi_n,\xi)\).
Now Prove \(\displaystyle lim(n\rightarrow infinity)\ of\ S(f;\pi_n,\xi)=\frac{5}{12}\)
Pretty clueless on this question. A walk through on the steps would be nice for the test coming.