M mdem1234 New member Joined Apr 6, 2009 Messages 15 Apr 26, 2009 #1 Hey guys, can anyone let me know if I've done this correctly.. The second derivative of e^x(x^2+2x+1) is e^x(x^2+6x+7) Thanks for your time
Hey guys, can anyone let me know if I've done this correctly.. The second derivative of e^x(x^2+2x+1) is e^x(x^2+6x+7) Thanks for your time
A arthur ohlsten Full Member Joined Feb 20, 2005 Messages 847 Apr 27, 2009 #2 Re: second derivative f[x]= e^u u=x^3+2x^2+x f ' = e^u u' f ' ' = e^u u' ' + u' e^u u' f ' ' =e^u [ (u')^2+u '' ] u'= 3x^2+4x +1 [u']^2= 9x^4 +24x^3 + 22x^2 +8x+1 u '' =6x+4 [u']^2 + u''= 9x^4+24x^3+22x^2+14x +5 f ' ' [x] = [9x^4+24x^3+22x^2+14x+5] e ^(x^3+2x^2+x) answer please check the math Arthur
Re: second derivative f[x]= e^u u=x^3+2x^2+x f ' = e^u u' f ' ' = e^u u' ' + u' e^u u' f ' ' =e^u [ (u')^2+u '' ] u'= 3x^2+4x +1 [u']^2= 9x^4 +24x^3 + 22x^2 +8x+1 u '' =6x+4 [u']^2 + u''= 9x^4+24x^3+22x^2+14x +5 f ' ' [x] = [9x^4+24x^3+22x^2+14x+5] e ^(x^3+2x^2+x) answer please check the math Arthur