Second Fundamental theorem of Calculus find f'(x)

goob94

New member
Joined
Jan 6, 2013
Messages
5
Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2]
 
The anti-derivative form of the FTOC states:

abf(x)dx=F(b)F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x) and so:

ddx(2x3x2t2+1dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=

ddx(F(3x2)F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=

ddx(F(3x2))ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=

Can you now complete this using the chain rule?
 
The anti-derivative form of the FTOC states:

abf(x)dx=F(b)F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x) and so:

ddx(2x3x2t2+1dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=

ddx(F(3x2)F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=

ddx(F(3x2))ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=

Can you now complete this using the chain rule?


I don't really understand how to use the chain rule, can you continue it?
 
ddx(F(u(x))=dFdududx=f(u)dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}

Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1} and for:

the first term: u(x)=3x2\displaystyle u(x)=3x^2

the second term: u(x)=2x\displaystyle u(x)=2x

So, what do you find?
 
Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2]

I like to state the Second Fundamental theorem of Calculus
a different way.

Suppose that each of f & g\displaystyle f~\&~g is a differentiable function and Φ(x)=g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} then Φ(x)=f(x)H(f(x))g(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x)).

In your problem is Φ(x)=2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} .

So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}
 
Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2]

I like to state the Second Fundamental theorem of Calculus
a different way.

Suppose that each of f & g\displaystyle f~\&~g is a differentiable function and Φ(x)=g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} then Φ(x)=f(x)H(f(x))g(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x)).

In your problem is Φ(x)=2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} .

So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}

how do i find h(f(x)) and h(g(x))

it would be then (6x)h(f(x))-2(h(g(x))
 
how do i find h(f(x)) and h(g(x))

it would be then (6x)h(f(x))-2(h(g(x))


Are you actually telling us (and the world) that you cannot find H(f(x))\displaystyle H(f(x)) but you think you can do this question?

You don't know that if H(t)=t2+1 & f(x)=3x2\displaystyle H(t)=\sqrt{t^2+1}~\&~f(x)=3x^2 then H(f(x))=9x4+1\displaystyle H(f(x))=\sqrt{9x^4+1}.

If not, why are you doing this question?
 
ddx(F(u(x))=dFdududx=f(u)dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}

Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1} and for:

the first term: u(x)=3x2\displaystyle u(x)=3x^2

the second term: u(x)=2x\displaystyle u(x)=2x

So, what do you find?

This would give us:

f(3x2)ddx(3x2)f(2x)ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=

(3x2)2+16x(2x)2+12=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=

6x9x4+124x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}

Does this make sense...please don't hesitate to ask if anything is unclear.
 
This would give us:

f(3x2)ddx(3x2)f(2x)ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=

(3x2)2+16x(2x)2+12=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=

6x9x4+124x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}

Does this make sense...please don't hesitate to ask if anything is unclear.

yes, thank you
 
Top