Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2]
G goob94 New member Joined Jan 6, 2013 Messages 5 Jan 6, 2013 #1 Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2]
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Jan 6, 2013 #2 The anti-derivative form of the FTOC states: ∫abf(x) dx=F(b)−F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a)∫abf(x)dx=F(b)−F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x)dxdF=f(x) and so: ddx(∫2x3x2t2+1 dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=dxd(∫2x3x2t2+1dt)= ddx(F(3x2)−F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=dxd(F(3x2)−F(2x))= ddx(F(3x2))−ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=dxd(F(3x2))−dxd(F(2x))= Can you now complete this using the chain rule?
The anti-derivative form of the FTOC states: ∫abf(x) dx=F(b)−F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a)∫abf(x)dx=F(b)−F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x)dxdF=f(x) and so: ddx(∫2x3x2t2+1 dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=dxd(∫2x3x2t2+1dt)= ddx(F(3x2)−F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=dxd(F(3x2)−F(2x))= ddx(F(3x2))−ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=dxd(F(3x2))−dxd(F(2x))= Can you now complete this using the chain rule?
G goob94 New member Joined Jan 6, 2013 Messages 5 Jan 6, 2013 #3 MarkFL said: The anti-derivative form of the FTOC states: ∫abf(x) dx=F(b)−F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a)∫abf(x)dx=F(b)−F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x)dxdF=f(x) and so: ddx(∫2x3x2t2+1 dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=dxd(∫2x3x2t2+1dt)= ddx(F(3x2)−F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=dxd(F(3x2)−F(2x))= ddx(F(3x2))−ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=dxd(F(3x2))−dxd(F(2x))= Can you now complete this using the chain rule? Click to expand... I don't really understand how to use the chain rule, can you continue it?
MarkFL said: The anti-derivative form of the FTOC states: ∫abf(x) dx=F(b)−F(a)\displaystyle \displaystyle \int_a^b f(x)\,dx=F(b) - F(a)∫abf(x)dx=F(b)−F(a) where dFdx=f(x)\displaystyle \dfrac{dF}{dx}=f(x)dxdF=f(x) and so: ddx(∫2x3x2t2+1 dt)=\displaystyle \displaystyle \frac{d}{dx}\left(\int_{2x}^{3x^2}\sqrt{t^2+1}\,dt \right)=dxd(∫2x3x2t2+1dt)= ddx(F(3x2)−F(2x))=\displaystyle \displaystyle \frac{d}{dx}\left(F(3x^2)-F(2x) \right)=dxd(F(3x2)−F(2x))= ddx(F(3x2))−ddx(F(2x))=\displaystyle \displaystyle \frac{d}{dx}(F(3x^2))-\frac{d}{dx}(F(2x))=dxd(F(3x2))−dxd(F(2x))= Can you now complete this using the chain rule? Click to expand... I don't really understand how to use the chain rule, can you continue it?
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Jan 6, 2013 #4 ddx(F(u(x))=dFdu⋅dudx=f(u)⋅dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}dxd(F(u(x))=dudF⋅dxdu=f(u)⋅dxdu Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1}f(t)=t2+1 and for: the first term: u(x)=3x2\displaystyle u(x)=3x^2u(x)=3x2 the second term: u(x)=2x\displaystyle u(x)=2xu(x)=2x So, what do you find?
ddx(F(u(x))=dFdu⋅dudx=f(u)⋅dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}dxd(F(u(x))=dudF⋅dxdu=f(u)⋅dxdu Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1}f(t)=t2+1 and for: the first term: u(x)=3x2\displaystyle u(x)=3x^2u(x)=3x2 the second term: u(x)=2x\displaystyle u(x)=2xu(x)=2x So, what do you find?
pka Elite Member Joined Jan 29, 2005 Messages 11,989 Jan 6, 2013 #5 goob94 said: Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2] Click to expand... I like to state the Second Fundamental theorem of Calculus a different way. Suppose that each of f & g\displaystyle f~\&~gf & g is a differentiable function and Φ(x)=∫g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} Φ(x)=∫g(x)f(x)H(t)dt then Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x))Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x)). In your problem is Φ(x)=∫2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} Φ(x)=∫2x3x2t2+1dt. So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}f(x)=3x2, g(x)=2x, & H(t)=t2+1
goob94 said: Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2] Click to expand... I like to state the Second Fundamental theorem of Calculus a different way. Suppose that each of f & g\displaystyle f~\&~gf & g is a differentiable function and Φ(x)=∫g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} Φ(x)=∫g(x)f(x)H(t)dt then Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x))Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x)). In your problem is Φ(x)=∫2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} Φ(x)=∫2x3x2t2+1dt. So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}f(x)=3x2, g(x)=2x, & H(t)=t2+1
G goob94 New member Joined Jan 6, 2013 Messages 5 Jan 6, 2013 #6 goob94 said: Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2] Click to expand... pka said: I like to state the Second Fundamental theorem of Calculus a different way. Suppose that each of f & g\displaystyle f~\&~gf & g is a differentiable function and Φ(x)=∫g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} Φ(x)=∫g(x)f(x)H(t)dt then Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x))Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x)). In your problem is Φ(x)=∫2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} Φ(x)=∫2x3x2t2+1dt. So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}f(x)=3x2, g(x)=2x, & H(t)=t2+1 Click to expand... how do i find h(f(x)) and h(g(x)) it would be then (6x)h(f(x))-2(h(g(x))
goob94 said: Using Second Fundamental theorem of Calculus find f'(x) for f(x)=∫√(t^2+1) dt for [2x, 3x^2] Click to expand... pka said: I like to state the Second Fundamental theorem of Calculus a different way. Suppose that each of f & g\displaystyle f~\&~gf & g is a differentiable function and Φ(x)=∫g(x)f(x)H(t)dt\displaystyle \Phi (x) = \int_{g(x)}^{f(x)} {H(t)dt} Φ(x)=∫g(x)f(x)H(t)dt then Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x))\displaystyle \Phi '(x) = f'(x)H(f(x)) - g'(x)H(g(x))Φ′(x)=f′(x)H(f(x))−g′(x)H(g(x)). In your problem is Φ(x)=∫2x3x2t2+1dt\displaystyle \Phi (x) = \int_{2x}^{3x^2 } {\sqrt {t^2 + 1} dt} Φ(x)=∫2x3x2t2+1dt. So f(x)=3x2, g(x)=2x, & H(t)=t2+1\displaystyle f(x)=3x^2,~g(x)=2x,~\&~H(t)=\sqrt{t^2+1}f(x)=3x2, g(x)=2x, & H(t)=t2+1 Click to expand... how do i find h(f(x)) and h(g(x)) it would be then (6x)h(f(x))-2(h(g(x))
pka Elite Member Joined Jan 29, 2005 Messages 11,989 Jan 6, 2013 #7 goob94 said: how do i find h(f(x)) and h(g(x)) it would be then (6x)h(f(x))-2(h(g(x)) Click to expand... Are you actually telling us (and the world) that you cannot find H(f(x))\displaystyle H(f(x))H(f(x)) but you think you can do this question? You don't know that if H(t)=t2+1 & f(x)=3x2\displaystyle H(t)=\sqrt{t^2+1}~\&~f(x)=3x^2H(t)=t2+1 & f(x)=3x2 then H(f(x))=9x4+1\displaystyle H(f(x))=\sqrt{9x^4+1}H(f(x))=9x4+1. If not, why are you doing this question?
goob94 said: how do i find h(f(x)) and h(g(x)) it would be then (6x)h(f(x))-2(h(g(x)) Click to expand... Are you actually telling us (and the world) that you cannot find H(f(x))\displaystyle H(f(x))H(f(x)) but you think you can do this question? You don't know that if H(t)=t2+1 & f(x)=3x2\displaystyle H(t)=\sqrt{t^2+1}~\&~f(x)=3x^2H(t)=t2+1 & f(x)=3x2 then H(f(x))=9x4+1\displaystyle H(f(x))=\sqrt{9x^4+1}H(f(x))=9x4+1. If not, why are you doing this question?
MarkFL Super Moderator Staff member Joined Nov 24, 2012 Messages 3,021 Jan 6, 2013 #8 MarkFL said: ddx(F(u(x))=dFdu⋅dudx=f(u)⋅dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}dxd(F(u(x))=dudF⋅dxdu=f(u)⋅dxdu Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1}f(t)=t2+1 and for: the first term: u(x)=3x2\displaystyle u(x)=3x^2u(x)=3x2 the second term: u(x)=2x\displaystyle u(x)=2xu(x)=2x So, what do you find? Click to expand... This would give us: f(3x2)⋅ddx(3x2)−f(2x)⋅ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=f(3x2)⋅dxd(3x2)−f(2x)⋅dxd(2x)= (3x2)2+1⋅6x−(2x)2+1⋅2=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=(3x2)2+1⋅6x−(2x)2+1⋅2= 6x9x4+1−24x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}6x9x4+1−24x2+1 Does this make sense...please don't hesitate to ask if anything is unclear.
MarkFL said: ddx(F(u(x))=dFdu⋅dudx=f(u)⋅dudx\displaystyle \displaystyle \frac{d}{dx}\left(F(u(x) \right)=\frac{dF}{du}\cdot\frac{du}{dx}=f(u)\cdot \frac{du}{dx}dxd(F(u(x))=dudF⋅dxdu=f(u)⋅dxdu Now, in our case, we have f(t)=t2+1\displaystyle f(t)=\sqrt{t^2+1}f(t)=t2+1 and for: the first term: u(x)=3x2\displaystyle u(x)=3x^2u(x)=3x2 the second term: u(x)=2x\displaystyle u(x)=2xu(x)=2x So, what do you find? Click to expand... This would give us: f(3x2)⋅ddx(3x2)−f(2x)⋅ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=f(3x2)⋅dxd(3x2)−f(2x)⋅dxd(2x)= (3x2)2+1⋅6x−(2x)2+1⋅2=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=(3x2)2+1⋅6x−(2x)2+1⋅2= 6x9x4+1−24x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}6x9x4+1−24x2+1 Does this make sense...please don't hesitate to ask if anything is unclear.
G goob94 New member Joined Jan 6, 2013 Messages 5 Jan 6, 2013 #9 MarkFL said: This would give us: f(3x2)⋅ddx(3x2)−f(2x)⋅ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=f(3x2)⋅dxd(3x2)−f(2x)⋅dxd(2x)= (3x2)2+1⋅6x−(2x)2+1⋅2=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=(3x2)2+1⋅6x−(2x)2+1⋅2= 6x9x4+1−24x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}6x9x4+1−24x2+1 Does this make sense...please don't hesitate to ask if anything is unclear. Click to expand... yes, thank you
MarkFL said: This would give us: f(3x2)⋅ddx(3x2)−f(2x)⋅ddx(2x)=\displaystyle \displaystyle f(3x^2)\cdot \frac{d}{dx}(3x^2)-f(2x)\cdot \frac{d}{dx}(2x)=f(3x2)⋅dxd(3x2)−f(2x)⋅dxd(2x)= (3x2)2+1⋅6x−(2x)2+1⋅2=\displaystyle \displaystyle \sqrt{(3x^2)^2+1}\cdot6x-\sqrt{(2x)^2+1}\cdot2=(3x2)2+1⋅6x−(2x)2+1⋅2= 6x9x4+1−24x2+1\displaystyle \displaystyle 6x\sqrt{9x^4+1}-2\sqrt{4x^2+1}6x9x4+1−24x2+1 Does this make sense...please don't hesitate to ask if anything is unclear. Click to expand... yes, thank you