There is a second-order non-homogeneous differential equation, as follows:
. . . . .x2y"−3xy′+4y=log(x)
I have to find the solution. Here is my attempt:
First, I found the solution to the homogeneous equation. It is a repeated root, so:
. . . . .yp=Axln(x)+Bx2
Here for the non-homogeneous equation, I used variation parameter:
. . . . .y1=x2ln(x)
. . . . .y2=x2
Using the Wronskian and Cramer's Rule:
. . . . .yp=u1.y1+u2.y2
. . . . .W=[x2ln(x)2xln(x)+xx22x]=−x3
. . . . .W1=[0log(x)x22x]=−x2ln(x)
. . . . .W2=[x2ln(x)2xln(x)+x0log(x)]=x2ln2(x)
. . . . .u′=WW1−x3−x2ln(x)=xln(x)
. . . . .u′=WW2−x3−x2ln2(x)=x−ln2(x)
I integrated to find u1 and u2:
. . . . .u1=21ln2(x)
. . . . .u2=−31ln3(x)
Then:
. . . . .yp=u1.y1+u2.y2
. . . . . . . .=21ln2(x).x2ln(x)−31ln3(x).x2=61x2ln3(x)
Is this correct?
By the way, the book says that the answer is:
. . . . .y=x2(Alog(x)+B)+?1(log(x)+1)
Why this is not
Sent from my iPhone using Tapatalk
. . . . .x2y"−3xy′+4y=log(x)
I have to find the solution. Here is my attempt:
First, I found the solution to the homogeneous equation. It is a repeated root, so:
. . . . .yp=Axln(x)+Bx2
Here for the non-homogeneous equation, I used variation parameter:
. . . . .y1=x2ln(x)
. . . . .y2=x2
Using the Wronskian and Cramer's Rule:
. . . . .yp=u1.y1+u2.y2
. . . . .W=[x2ln(x)2xln(x)+xx22x]=−x3
. . . . .W1=[0log(x)x22x]=−x2ln(x)
. . . . .W2=[x2ln(x)2xln(x)+x0log(x)]=x2ln2(x)
. . . . .u′=WW1−x3−x2ln(x)=xln(x)
. . . . .u′=WW2−x3−x2ln2(x)=x−ln2(x)
I integrated to find u1 and u2:
. . . . .u1=21ln2(x)
. . . . .u2=−31ln3(x)
Then:
. . . . .yp=u1.y1+u2.y2
. . . . . . . .=21ln2(x).x2ln(x)−31ln3(x).x2=61x2ln3(x)
Is this correct?
By the way, the book says that the answer is:
. . . . .y=x2(Alog(x)+B)+?1(log(x)+1)
Why this is not
Sent from my iPhone using Tapatalk
Last edited by a moderator: