sequence divergence proof

shelly89

Junior Member
Joined
Oct 17, 2012
Messages
53
an=n+2sin(n)\displaystyle a_{n} = \sqrt{n} + 2sin (n)

let m >0

take N=(2+m)2\displaystyle N= (2+m)^{2} and let n >N

then

n2\displaystyle \geq \sqrt{n} -2

> 2+m-2 = m

because n >N

n>N=2+m\displaystyle \sqrt{n} > \sqrt{N} = 2+m

where does N come from ?

we want an>m\displaystyle a_{n} > m

start with

an=n+2sin(n)\displaystyle a_{n} = \sqrt{n} + 2sin (n)

>n2\displaystyle > \sqrt{n} -2 which exceeds m

provided that

n>m+2\displaystyle \sqrt{n} > m+2


provided

n>(m+2)2\displaystyle n > (m+2)^{2}


if

N=(m+2)2\displaystyle N = (m+2)^{2}



then

n>N\displaystyle n > N

implies

n>(m+2)2\displaystyle n > (m+2)^{2}

therefore

an>m\displaystyle a_{n} > m



can someone please explain how this proof to me i just cant follow it,

I dont understand how we go from

n+2sin(n)>m\displaystyle \sqrt{n} +2sin(n) > m

to

>n2\displaystyle > \sqrt{n} - 2

how did they get this bit?
 
Note: If 0<a<b\displaystyle 0<a<b then a<b\displaystyle \sqrt{a}<\sqrt{b}.

If (2+m)2=N<n\displaystyle (2+m)^2=N<n, then 2+m=(2+m)2=N<n\displaystyle 2+m = \sqrt{(2+m)^2} = \sqrt{N} < \sqrt{n} so m<n2\displaystyle m < \sqrt{n}-2
 
Note: If 0<a<b\displaystyle 0<a<b then a<b\displaystyle \sqrt{a}<\sqrt{b}.

If (2+m)2=N<n\displaystyle (2+m)^2=N<n, then 2+m=(2+m)2=N<n\displaystyle 2+m = \sqrt{(2+m)^2} = \sqrt{N} < \sqrt{n} so m<n2\displaystyle m < \sqrt{n}-2


thank you, but I still dont understand what happened to sin (n) ?

you go from

n2sin(n)\displaystyle \sqrt{n} -2sin(n)

to

n2\displaystyle \sqrt{n} -2


how?
 
thank you, but I still dont understand what happened to sin (n) ?

you go from

n2sin(n)\displaystyle \sqrt{n} -2sin(n)

to

n2\displaystyle \sqrt{n} -2


how?
What is the largest value possible for 2 * sin(n) regardless of the value of n?
 
well sin is bounded between -1 and 1,
So 22sin(n)+2.\displaystyle - 2 \le 2 * sin(n) \le + 2.

Now do you see where the 2 came from and where the sine function went to?
 
So 22sin(n)+2.\displaystyle - 2 \le 2 * sin(n) \le + 2.

Now do you see where the 2 came from and where the sine function went to?

understand where 2 'came from' but not where the sin (n) function 'went to', could you explain that bit ?


thanks
 
where the sin (n) function 'went to', could you explain that bit ?
It did not 'go' anywhere.
1sin(n)1, start with a well known fact.22sin(n)2, multiply by 2n+2n2sin(n)n2, add the n to all three members.\displaystyle \\-1\le\sin(n)\le 1\text{, start with a well known fact}.\\ 2\ge -2\sin(n)\ge -2\text{, multiply by }-2 \\\sqrt{n}+2\ge \sqrt{n}-2\sin(n)\ge \sqrt{n}-2 \text{, add the }\sqrt{n} \text{ to all three members.}

Do you see how it works?
 
It did not 'go' anywhere.
1sin(n)1, start with a well known fact.22sin(n)2, multiply by 2n+2n2sin(n)n2, add the n to all three members.\displaystyle \\-1\le\sin(n)\le 1\text{, start with a well known fact}.\\ 2\ge -2\sin(n)\ge -2\text{, multiply by }-2 \\\sqrt{n}+2\ge \sqrt{n}-2\sin(n)\ge \sqrt{n}-2 \text{, add the }\sqrt{n} \text{ to all three members.}

Do you see how it works?


oh goodness, now i get it! I just get very confused with rules of inequalities, its so confusing. But thank you , it all makes sense now.
 
Top