Series convergence doubt

VGNDISCPLN

New member
Joined
Jun 26, 2020
Messages
8
Hello everyone i am currently studying transport phenomena by my own and i have a doubt about how the author makes a simplification of an equation by using the taylor series, i have like 4 days trying to understand how does he gets the result. Can someone please explain me what he does and why. i will really apreciate it a lot.
This is the simplification:
1594243451361.png
How does he determines that this 1594243574475.pngreduces to this: 1594243599847.png
i apreciate your help a lot.
 
[math] \left(-\frac{1}{a^2}\right)-\left(-\frac{1}{a^2}\right)=0[/math]
[math] \left(\frac{1}{2}\right)-\left(\frac{1}{2}\frac{x^2}{\delta^2}\right) = \frac{1}{2}\left[ 1-\left(\frac{x}{\delta}\right)^2\right][/math]...you missed the author's "half" outside the square bracket (the denominator becomes multiplied by two)

Then all the remaining addends are multiplied by \(a\) which tends towards 0 in the limit
 
You simply plug in a=0. The only place you can't plug in is when a (actually a2) is in the denominator. But you've got two of those and they happen to cancel.
 
i still don´t understand
thanks anyway
Can you state what you don't understand, to help others help you?

The part you are asking about is

[MATH]\lim_{a\rightarrow 0}\left[\left(-\frac{1}{a^2} + \frac{1}{2} +\frac{1}{3}a + \dots\right) - \left(-\frac{1}{a^2} + \frac{1}{2}\frac{x^2}{\delta^2} +\frac{1}{3}\frac{x^3}{\delta^3}a + \dots\right)\right] =[/MATH][MATH]\lim_{a\rightarrow 0}\left[-\frac{1}{a^2} + \frac{1}{2} +\frac{1}{3}a + \dots + \frac{1}{a^2} - \frac{1}{2}\frac{x^2}{\delta^2} -\frac{1}{3}\frac{x^3}{\delta^3}a - \dots\right] =[/MATH][MATH]\lim_{a\rightarrow 0}\left[\frac{1}{2} +\frac{1}{3}a + \dots - \frac{1}{2}\frac{x^2}{\delta^2} -\frac{1}{3}\frac{x^3}{\delta^3}a - \dots\right] =[/MATH][MATH]\lim_{a\rightarrow 0}\left[\left(\frac{1}{2} - \frac{1}{2}\frac{x^2}{\delta^2}\right) + a\left(\frac{1}{3} -\frac{1}{3}\frac{x^3}{\delta^3} + \dots\right)\right] =[/MATH][MATH]\left[\frac{1}{2} - \frac{1}{2}\frac{x^2}{\delta^2} \right] =[/MATH][MATH]\frac{1}{2}\left[ 1-\left(\frac{x}{\delta}\right)^2\right][/MATH]
Which step do you not follow?
 
Again the notation gets in the way. When you are given expressions with lots of symbols, it is hard for the human mind to keep track. So SIMPLIFY.

[MATH]A = \dfrac{\rho g \delta^2 cos ( \beta )}{\mu_0} \left \{ \left ( 1 + \alpha + \dfrac{\alpha ^2}{2} + \dfrac{\alpha^3}{3! }\ ... \right ) \\ * \left ( \dfrac{1}{a} - \dfrac{1}{a^2} \right ) \\ - \left ( 1 + \dfrac{\alpha x }{\delta} + \dfrac{\alpha^2 x^2}{\delta^2 * 2!} + \dfrac{\alpha^3 x^3}{\delta^3 * 3!}\ ... \ \right ) \\ * \left ( \dfrac{x}{\alpha \delta} - \dfrac{1}{\alpha^2} \right ) \right \}.[/MATH]What a mess! We can start by getting rid of that initial fraction and using summation notation.

[MATH]A = B \left \{ \left ( \sum_{j=0}^{\infty} \dfrac{\alpha ^j}{j!} \right) \left (\dfrac{1}{\alpha} - \dfrac{1}{\alpha ^2}\right ) - \left ( \sum_{j=0}^{\infty} \dfrac{\alpha^j x^j}{\delta^j * j!} \right ) \left ( \dfrac{x}{\alpha \delta} - \dfrac{1}{\alpha^2} \right ) \right \}.[/MATH]
Now that still looks quite ugly, but notice that there may be opportunities for simplifying by telescoping.

[MATH]\dfrac{1}{a} * \dfrac{\alpha^{k}}{k!} - \dfrac{1}{a^2} * \dfrac{\alpha^{(k+1)}}{(k + 1)!} = \dfrac{\alpha^{(k-1)}}{k!} - \dfrac{\alpha^{(k-1)}}{(k + 1)!} =\\ \dfrac{(k + 1)\alpha^{(k-1)}}{(k + 1)!} - \dfrac{\alpha^{(k-1)}}{(k + 1)!} = \dfrac{k\alpha^{(k-1)}}{(k + 1)!}.[/MATH]Now this is not consistent with your text. Maybe I made an error.

[MATH] \dfrac{x}{\alpha \delta} * \dfrac{\alpha^k x^k}{\delta^k * k!} - \dfrac{1}{\alpha^2} * \dfrac{\alpha^{(k+1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!} = [/MATH]
[MATH] \dfrac{\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * k!} - \dfrac{\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!} = [/MATH]
[MATH] \dfrac{\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * k!} - \dfrac{\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!} = [/MATH]
[MATH] \dfrac{(k + 1)\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!} - \dfrac{\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!} = [/MATH]
[MATH] \dfrac{k\alpha^{(k-1)} x^{(k+1)}}{\delta^{(k+1)} * (k + 1)!}.[/MATH]
Again this is not consistent with your text. Again I may have made an error. But let's assume I did not make an error.

[MATH]A = B \left \{ - \dfrac{1}{a^2} + \sum_{j=0}^{\infty} \dfrac{j\alpha^{(j-1)}}{(j + 1)!} - \left ( - \dfrac{1}{a^2} + \sum_{j=0}^{\infty} \dfrac{j\alpha^{(j-1)} x^{(j+1)}}{\delta^{(k+1)} * (k + 1)!} \right) \right \} =[/MATH]
[MATH]B \left \{ \left ( \sum_{j=0}^{\infty} \dfrac{j\alpha^{(j-1)}}{(j + 1)!} \right ) - \left ( \sum_{j=0}^{\infty} \dfrac{j\alpha^{(j-1)} x^{(j+1)}}{\delta^{(j+1)} * (j + 1)!} \right) \right \} =[/MATH]
[MATH]B \left \{\left ( \dfrac{0 * \alpha^{-1}}{1!} + \dfrac{1 * \alpha^0}{2!} + \sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-1)}}{(j + 1)!} \right )\\ - \left ( \dfrac{0 * \alpha^{-1}x^1}{\delta^1 * 1!} + \dfrac{1 * \alpha^0x^2}{\delta^2 * 2!} + \sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-1)} x^{(j+1)}}{\delta^{(j+1)} * (j + 1)!} \right) \right \} =[/MATH]
[MATH]B \left \{\left (0 + \dfrac{1}{2} + a *\sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-2)}}{(j + 1)!} \right )\\ - \left (0 + \dfrac{1x^2}{2\delta^2} + a * \sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-2)} x^{(j+1)}}{\delta^{(j+1)} * (j + 1)!} \right) \right \} =[/MATH]
[MATH]\dfrac{B}{2} \left (1 + \dfrac{x^2}{\delta^2} \right) - \alpha B \left \{\left ( \sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-2)}}{(j + 1)!}\right ) - \left ( \sum_{j=2}^{\infty} \dfrac{j\alpha^{(j-2)} x^{(j+1)}}{\delta^{j+1}(j + 1)!} \right) \right \}.[/MATH]
But multiplying by alpha as it approaches zero means that ugly product approaches zero.

[MATH]\lim_{\alpha \rightarrow 0} A = \dfrac{B}{2} * \left ( 1 - \dfrac{x^2}{\delta^2} \right ).[/MATH]
So I get the same answer as the text.
 
Last edited:
Top