Hey all!
I have to prove or disprove the following statement:
"If matrices A and B are similar and row-equivalent then A=B".
I am trying to prove it since I didn't manage to disprove it yet...
I now that if A and B are similar then there exists a matrix P so that: A=P−1BP.
I also know that if A and B are row-equivalent then: A=E1⋅E2⋯EnB when Ei are elementary matrices.
I am not sure how to continue from here...
Can someone please tell me if this sentence is true and if it is, how should I continue?
I have to prove or disprove the following statement:
"If matrices A and B are similar and row-equivalent then A=B".
I am trying to prove it since I didn't manage to disprove it yet...
I now that if A and B are similar then there exists a matrix P so that: A=P−1BP.
I also know that if A and B are row-equivalent then: A=E1⋅E2⋯EnB when Ei are elementary matrices.
I am not sure how to continue from here...
Can someone please tell me if this sentence is true and if it is, how should I continue?