Simple derivation: F(t)=1-e^(-1/t), E(t)=dF/dt=e^(-1/t)(....

f0rked

New member
Joined
Mar 9, 2008
Messages
5
needhalpdq7.gif

Could anyone tell me if this is correct? Thanks! It's been a while since I've done any differentiation and I'm a bit rusty.
 
Re: Simple derivation.

Hello, f0rked!

Not quite . . .


F(t)=1e1t\displaystyle F(t) \:=\:1-e^{-\frac{1}{t}}

Then:   dFdt  =  e1tddt(1t)\displaystyle \text{Then: }\;\frac{dF}{dt} \;=\;-e^{-\frac{1}{t}}\cdot\frac{d}{dt}\left(-\frac{1}{t}\right)

. . ddt(1t)  =  ddt(t1)  =  t2  =  1t2\displaystyle \frac{d}{dt}\left(-\frac{1}{t}\right) \;=\;\frac{d}{dt}\left(-t^{-1}\right) \;=\;t^{-2} \;=\;\frac{1}{t^2}


Therefore:   dFdt  =  e1t1t2  =  e1tt2\displaystyle \text{Therefore: }\;\frac{dF}{dt} \;=\;-e^{-\frac{1}{t}}\cdot\frac{1}{t^2} \;=\;-\frac{e^{-\frac{1}{t}}}{t^2}

 
Top