Simultaneous equations

-------------------------------------------------------------------------------------------------------------------------------------------------

For the first part :
It tells to find the total area,which is the area of the rectangle.

So Area of a rectangle = length*width = L*w

L=(x + y )+ ( x + y ) + x

w= (x + y) + x

By replacing you'll get the Area ...



 
Hello, lovely_nancy!

A window consists of six square panes of glass (x by x meters)\displaystyle \text{A window consists of six square panes of glass }(x\text{ by }x\text{ meters})
. . and all the wooden dividers are y meters wide.\displaystyle \text{and all the wooden dividers are }y\text{ meters wide.}

Code:
    - *-------*---*-------*---*-------*
      |       |:::|       |:::|       |
    x |       |:::|       |:::|       |
      |       |:::|       |:::|       |
    - *-------*:::*-------*:::*-------*
    y |:::::::::::::::::::::::::::::::|
   -  *-------*:::*-------*:::*-------*
      |       |:::|       |:::|       |
    x |       |:::|       |:::|       |
      |       |:::|       |:::|       |
    - *-------*---*-------*---*-------*
      :   x   : y :   x   : y :   x   :
(a) Write the area of the whole window in terms of x and y.\displaystyle \text{(a) Write the area of the whole window in terms of }x\text{ and }y.
The width of the window is: 3x+2y meters.\displaystyle \text{The width of the window is: }\:3x+2y\,\text{ meters.}
The height of the window is: 2x+y meters.\displaystyle \text{The height of the window is: }\:2x+y\,\text{ meters.}

The area is:   (3x+2y)(2x+y)  =  6x2+7xy+2y2 square meters\displaystyle \text{The area is: }\;(3x+2y)(2x+y) \;=\;6x^2 + 7xy + 2y^2\,\text{ square meters}


 (b) Show that the area of the dividers is 7xy+2y2\displaystyle \text{ (b) Show that the area of the dividers is }\,7xy + 2y^2
The area of the whole window is: 6x2+7xy+2y2\displaystyle \text{The area of the whole window is: }\,6x^2 + 7xy + 2y^2
The area of the 6 panes of glass is: 6x2\displaystyle \text{The area of the 6 panes of glass is: }\,6x^2

\(\displaystyle \text{Therefore, the area of the dividers is: }\:(x^2 + 7xy + 2y^2) - 6x^2 \;=\;7xy + 2y^2\)


The total area of glass is 1.5 m2.\displaystyle \text{The total area of glass is 1.5 m}^2.
The total area of the dividers is 1 m2.\displaystyle \text{The total area of the dividers is 1 m}^2.

Find x, and find an equation for y, and solve.\displaystyle \text{Find }x\text{, and find an equation for }y\text{, and solve.}
The total area of glass is 1.5 m2:    6x2=1.5x2=14x=12 meter\displaystyle \text{The total area of glass is 1.5 m}^2: \;\;6x^2 \:=\:1.5 \quad\Rightarrow\quad x^2 \:=\:\tfrac{1}{4} \quad\Rightarrow\quad \boxed{x \:=\:\tfrac{1}{2}\text{ meter}}


The total area of the dividers is 1 m:   7xy+2y2=1\displaystyle \text{The total area of the dividers is 1 m: }\;7xy + 2y^2 \:=\:1

Then we have:   7(12)y+2y2=14y2+7y2=0\displaystyle \text{Then we have: }\;7\left(\frac{1}{2}\right)y + 2y^2 \:=\:1 \quad\Rightarrow\quad 4y^2 + 7y - 2 \:=\:0

. . . (4y1)(y+2)=0y=14,  2\displaystyle (4y-1)(y+2) \:=\:0 \quad\Rightarrow\quad y \:=\:\tfrac{1}{4},\;-2

Therefore:   y=14 meter\displaystyle \text{Therefore: }\;\boxed{y \:=\:\tfrac{1}{4}\text{ meter}}
 
Top