Sin and Cos equation

petitpauline

New member
Joined
Sep 15, 2010
Messages
4
Hi i've this equation with sin and tan that i couldn't solve
math_image.aspx


the answer is

+- ?/6 +k?




thank you
 
Rewrite totally in terms of cos.

8cos2(x)3sin2(x)cos2(x)5=0\displaystyle 8cos^{2}(x)-3\frac{sin^{2}(x)}{cos^{2}(x)}-5=0

8cos2(x)3(1cos2(x)cos2(x)))5=0\displaystyle 8cos^{2}(x)-3(\frac{1-cos^{2}(x)}{cos^{2}(x))})-5=0

Multiply by cos2(x)\displaystyle cos^{2}(x):

8cos4(x)3+3cos2(x)5cos2(x)=0\displaystyle 8cos^{4}(x)-3+3cos^{2}(x)-5cos^{2}(x)=0

8cos4(x)2cos2(x)3=0\displaystyle 8cos^{4}(x)-2cos^{2}(x)-3=0

Now, let u=cos(x)\displaystyle u=cos(x) and

8u42u23=0\displaystyle 8u^{4}-2u^{2}-3=0

This has two real solutions: u=±32\displaystyle u=\pm\frac{\sqrt{3}}{2}

Now, see how to get x=π6\displaystyle x=\frac{\pi}{6}?.
 
A slightly different route to get the same equation:

8cos2x3tan2x5=0\displaystyle 8cos^2x - 3tan^2x - 5 = 0

8cos2x3(sec2x1)5=0\displaystyle 8cos^2x - 3(sec^2x - 1) - 5 = 0

8cos2x31cos2x2=0\displaystyle 8cos^2x - 3\frac{1}{cos^2x} - 2 = 0

8cos4x32cos2x=0\displaystyle 8cos^4x - 3 - 2cos^2x = 0

and so on...
 
Top