Solve 9^2x = 27^(1 - x) with logs

Re: 9^2x = 27^(1-x)

34x=92x=27(1x)=3(33x)\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}
 
Hello, JAsh!

Solve with logs: .92x=271x\displaystyle 9^{2x} \:= \:27^{1-x}

If we must use logs . . .

\(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\:(1-x)\!\cdot\!\log(27)\)

. . 2x ⁣ ⁣log(9)=log(27)x ⁣ ⁣log(27)2x ⁣ ⁣log(9)+x ⁣ ⁣log(27)=log(27)\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)

Factor:   x[2log(9)+log(27)]=log(27)x  =  log(27)2 ⁣ ⁣log(9)+log(27)\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}

\(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\)


~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

What pka was telling you: we don't need logs for this problem.

. . 92x  =  (32x)2  =  34x\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}

. . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\)

The equation becomes:   34x=333x\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}

Since the bases are equal, we can equate the exponents.

. . 4x=33x7x=3x=37\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}

 
Top