solve with logs: 9^2x = 27^(1-x) please help!
J JAsh New member Joined Jun 17, 2008 Messages 9 Jun 17, 2008 #1 solve with logs: 9^2x = 27^(1-x) please help!
pka Elite Member Joined Jan 29, 2005 Messages 11,982 Jun 17, 2008 #2 Re: 9^2x = 27^(1-x) 34x=92x=27(1−x)=3(3−3x)\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}34x=92x=27(1−x)=3(3−3x)
Re: 9^2x = 27^(1-x) 34x=92x=27(1−x)=3(3−3x)\displaystyle 3^{4x} = 9^{2x} = 27^{\left( {1 - x} \right)} = 3^{\left( {3 - 3x} \right)}34x=92x=27(1−x)=3(3−3x)
S soroban Elite Member Joined Jan 28, 2005 Messages 5,586 Jun 17, 2008 #3 Hello, JAsh! Solve with logs: .92x = 271−x\displaystyle 9^{2x} \:= \:27^{1-x}92x=271−x Click to expand... If we must use logs . . . \(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\1-x)\!\cdot\!\log(27)\) . . 2x ⋅ log(9) = log(27)−x ⋅ log(27)⇒2x ⋅ log(9)+x ⋅ log(27) = log(27)\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)2x⋅log(9)=log(27)−x⋅log(27)⇒2x⋅log(9)+x⋅log(27)=log(27) Factor: x[2log(9)+log(27)] = log(27)⇒x = log(27)2 ⋅ log(9)+log(27)\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}Factor: x[2log(9)+log(27)]=log(27)⇒x=2⋅log(9)+log(27)log(27) \(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ What pka was telling you: we don't need logs for this problem. . . 92x = (32x)2 = 34x\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}92x=(32x)2=34x . . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\) The equation becomes: 34x = 33−3x\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}The equation becomes: 34x=33−3x Since the bases are equal, we can equate the exponents. . . 4x = 3−3x⇒7x = 3⇒x = 37\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}4x=3−3x⇒7x=3⇒x=73
Hello, JAsh! Solve with logs: .92x = 271−x\displaystyle 9^{2x} \:= \:27^{1-x}92x=271−x Click to expand... If we must use logs . . . \(\displaystyle \text{Take logs: }\;\log\left(9^{2x}\right) \:=\:\log\left(27^{1-x}\right) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) \:=\1-x)\!\cdot\!\log(27)\) . . 2x ⋅ log(9) = log(27)−x ⋅ log(27)⇒2x ⋅ log(9)+x ⋅ log(27) = log(27)\displaystyle 2x\!\cdot\!\log(9) \:=\:\log(27) - x\!\cdot\!\log(27) \quad\Rightarrow\quad 2x\!\cdot\!\log(9) + x\!\cdot\!\log(27) \:=\:\log(27)2x⋅log(9)=log(27)−x⋅log(27)⇒2x⋅log(9)+x⋅log(27)=log(27) Factor: x[2log(9)+log(27)] = log(27)⇒x = log(27)2 ⋅ log(9)+log(27)\displaystyle \text{Factor: }\;x\left[2\log(9) + \log(27)\right] \:=\:\log(27) \quad\Rightarrow\quad x \;=\;\frac{\log(27)}{2\!\cdot\!\log(9) + \log(27)}Factor: x[2log(9)+log(27)]=log(27)⇒x=2⋅log(9)+log(27)log(27) \(\displaystyle \text{Crank it through your calculator: }\;x \;=\;0.428571428571\hdots \;=\;\boxed{\frac{3}{7}}\) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ What pka was telling you: we don't need logs for this problem. . . 92x = (32x)2 = 34x\displaystyle 9^{2x} \;=\;\left(3^{2x}\right)^2 \;=\;3^{4x}92x=(32x)2=34x . . \(\displaystyle 27^{1-x} \;=\;\left(3^3}\right)^{1-x} \;=\;3^{3(1-x)} \;=\;3^{3-3x}\) The equation becomes: 34x = 33−3x\displaystyle \text{The equation becomes: }\;3^{4x} \:=\:3^{3-3x}The equation becomes: 34x=33−3x Since the bases are equal, we can equate the exponents. . . 4x = 3−3x⇒7x = 3⇒x = 37\displaystyle 4x \:=\:3-3x\quad\Rightarrow\quad 7x \:=\:3\quad\Rightarrow\quad x \:=\:\frac{3}{7}4x=3−3x⇒7x=3⇒x=73