Solving a cubic equation

Aion

Junior Member
Joined
May 8, 2018
Messages
214
Problem.

By solving the cubic equation x3+x+1=3+ϵx^3+x+1=3+\epsilon, find the largest possible value of δ\delta that works for any given ϵ>0\epsilon >0. (35 (b) from Stewart Calculus.)


My attempt:

Any third degree polynomial x3+px+q=0x^3+px+q=0 with Δ=(p3)3+(q2)2>0\Delta =\left(\frac{p}{3}\right)^3+\left(\frac{q}{2}\right)^2>0 has one real root

x1=q2+Δ3+q2Δ3x_1=\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}}and two complex conjugate roots
x2=ω2q2+Δ3+ωq2Δ3x_2=\omega^2\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\omega\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}} x3=ωq2+Δ3+ω2q2Δ3x_3=\omega\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\omega^2\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}}
In this case, the equation above can be written as
x3+x(2+ϵ)=0x^3+x-(2+\epsilon)=0
where p=1p=1 and q=(2+ϵ)q=-(2+\epsilon). Hence Δ=(13)3+(2+ϵ2)2>0\Delta=\left(\frac{1}{3}\right)^3+\left( \frac{2+\epsilon}{2}\right)^2>0
Substituting into Cardano's formula we have a real solution
x1=2+ϵ2+(13)3+(2+ϵ2)23+2+ϵ2(13)3+(2+ϵ2)23x_1=\sqrt[3]{\frac{2+\epsilon}{2}+\sqrt{\left(\frac{1}{3}\right)^3+\left( \frac{2+\epsilon}{2}\right)^2}}+ \sqrt[3]{\frac{2+\epsilon}{2}-\sqrt{\left(\frac{1}{3}\right)^3+\left(\frac{2+\epsilon}{2}\right)^2}}
From a graphical perspective, we are finding the intersection of the polynomial y=x3+x+1y=x^3+x+1 and the horizontal line y=3+ϵy=3+ϵ. Finding the intersection point of these two graphs, aligns with finding the xx-coordinate of the intersection point as ϵ\epsilon varies. For small ϵ\epsilon we can approximate a solution as the equation becomes x3+x2=0x^3+x-2=0 which has a real solution x=1x=1. This makes sense since limx1(x3+x+1)=3\lim_{x \to 1} \left( x^3+x+1\right)=3. This solution can be written as x=1+δx=1+\delta. If we substitute x=1+δx=1+\delta into the original equation x3+x(2+ϵ)=0x^3+x-(2+\epsilon)=0 we obtain

(1+δ)3+(1+δ)(2+ϵ)=0(1+\delta)^3+(1+\delta)-(2+\epsilon)=0Expanding
1+3δ+3δ2+δ3+1+δ2ϵ=01+3\delta+3\delta^2+\delta^3+1+\delta-2-\epsilon=0
For small δ\delta we can ignore higher order terms δ2\delta^2 and δ3\delta^3.

δϵ4\delta\approx\frac{\epsilon}{4}Thus the approximate solution for the x-coordinate when y=x3+x+1y=x^3+x+1 intersects the horizontal line y=3+ϵy=3+ϵ is

x1+ϵ4x\approx 1+\frac{\epsilon}{4}
 
Problem.

By solving the cubic equation x3+x+1=3+ϵx^3+x+1=3+\epsilon, find the largest possible value of δ\delta that works for any given ϵ>0\epsilon >0. (35 (b) from Stewart Calculus.)


My attempt:

Any third degree polynomial x3+px+q=0x^3+px+q=0 with Δ=(p3)3+(q2)2>0\Delta =\left(\frac{p}{3}\right)^3+\left(\frac{q}{2}\right)^2>0 has one real root

x1=q2+Δ3+q2Δ3x_1=\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}}and two complex conjugate roots
x2=ω2q2+Δ3+ωq2Δ3x_2=\omega^2\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\omega\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}} x3=ωq2+Δ3+ω2q2Δ3x_3=\omega\sqrt[3]{\frac{-q}{2}+\sqrt{\Delta}}+\omega^2\sqrt[3]{\frac{-q}{2}-\sqrt{\Delta}}
In this case, the equation above can be written as
x3+x(2+ϵ)=0x^3+x-(2+\epsilon)=0
where p=1p=1 and q=(2+ϵ)q=-(2+\epsilon). Hence Δ=(13)3+(2+ϵ2)2>0\Delta=\left(\frac{1}{3}\right)^3+\left( \frac{2+\epsilon}{2}\right)^2>0
Substituting into Cardano's formula we have a real solution
x1=2+ϵ2+(13)3+(2+ϵ2)23+2+ϵ2(13)3+(2+ϵ2)23x_1=\sqrt[3]{\frac{2+\epsilon}{2}+\sqrt{\left(\frac{1}{3}\right)^3+\left( \frac{2+\epsilon}{2}\right)^2}}+ \sqrt[3]{\frac{2+\epsilon}{2}-\sqrt{\left(\frac{1}{3}\right)^3+\left(\frac{2+\epsilon}{2}\right)^2}}
From a graphical perspective, we are finding the intersection of the polynomial y=x3+x+1y=x^3+x+1 and the horizontal line y=3+ϵy=3+ϵ. Finding the intersection point of these two graphs, aligns with finding the xx-coordinate of the intersection point as ϵ\epsilon varies. For small ϵ\epsilon we can approximate a solution as the equation becomes x3+x2=0x^3+x-2=0 which has a real solution x=1x=1. This makes sense since limx1(x3+x+1)=3\lim_{x \to 1} \left( x^3+x+1\right)=3. This solution can be written as x=1+δx=1+\delta. If we substitute x=1+δx=1+\delta into the original equation x3+x(2+ϵ)=0x^3+x-(2+\epsilon)=0 we obtain

(1+δ)3+(1+δ)(2+ϵ)=0(1+\delta)^3+(1+\delta)-(2+\epsilon)=0Expanding
1+3δ+3δ2+δ3+1+δ2ϵ=01+3\delta+3\delta^2+\delta^3+1+\delta-2-\epsilon=0
For small δ\delta we can ignore higher order terms δ2\delta^2 and δ3\delta^3.

δϵ4\delta\approx\frac{\epsilon}{4}Thus the approximate solution for the x-coordinate when y=x3+x+1y=x^3+x+1 intersects the horizontal line y=3+ϵy=3+ϵ is

x1+ϵ4x\approx 1+\frac{\epsilon}{4}
I also noticed that as ϵ0\epsilon \to 0 we have
x=1+127+131+127+13=1x=\sqrt[3]{1 + \sqrt{\frac{1}{27} + 1}} - \sqrt[3]{-1 + \sqrt{\frac{1}{27} + 1}}=1which also makes sense in this context.
 
Top