thin rod

logistic_guy

Full Member
Joined
Apr 17, 2024
Messages
878
A thin rod of length 2L\displaystyle 2L is centered on the x\displaystyle x axis. The rod carries a uniformly distributed charge Q\displaystyle Q. Determine the potential V\displaystyle V as a function of y\displaystyle y for points along the y\displaystyle y axis. Let V=0\displaystyle V = 0 at infinity.
 
A thin rod of length 2L\displaystyle 2L is centered on the x\displaystyle x axis. The rod carries a uniformly distributed charge Q\displaystyle Q. Determine the potential V\displaystyle V as a function of y\displaystyle y for points along the y\displaystyle y axis. Let V=0\displaystyle V = 0 at infinity.
Please show us what you have tried and exactly where you are stuck.

Please follow the rules of posting in this forum, as enunciated at:

READ BEFORE POSTING

Please share your work/thoughts about this problem
 
V=dV=k1r dq\displaystyle V = \int dV = \int k\frac{1}{r} \ dq
 
From accumulated experience when the charge Q\displaystyle Q is uniformly distributed then the density per unit length is:

λ=dQdx\displaystyle \lambda = \frac{dQ}{dx}

I am assuming that I placed the thin rod on a coordinate system! Then the integral becomes:

V=k1r dQ=λk1r dx\displaystyle V = \int k\frac{1}{r} \ dQ = \lambda k \int \frac{1}{r} \ dx

It is still tough but I made a progress.

🤩🙌
 
With a sketch, I figured out how to write the variable r\displaystyle r in terms of the variable x\displaystyle x. I am just lazy to show it here!

V=λk1r dx=λk1x2+y2 dx\displaystyle V = \lambda k \int \frac{1}{r} \ dx = \lambda k \int \frac{1}{\sqrt{x^2 + y^2}} \ dx

😴
 
V=λkLL1x2+y2 dx=2λk0L1x2+y2 dx\displaystyle V = \lambda k \int_{-L}^{L} \frac{1}{\sqrt{x^2 + y^2}} \ dx = 2\lambda k \int_{0}^{L} \frac{1}{\sqrt{x^2 + y^2}} \ dx

Ahhh this is an overwhelming integral😭

x=yu\displaystyle x = yu
dx=y du\displaystyle dx = y \ du

V=2λk0Ly1u2+1 du\displaystyle V = 2\lambda k \int_{0}^{\frac{L}{y}} \frac{1}{\sqrt{u^2 + 1}} \ du

u=tanv\displaystyle u = \tan v
du=sec2v dv\displaystyle du = \sec^2 v \ dv

V=2λk0tan1Lysecv dv=2λk0tan1Lysec2v+secvtanvsecv+tanv dv\displaystyle V = 2\lambda k \int_{0}^{\tan^{-1}\frac{L}{y}} \sec v \ dv = 2\lambda k \int_{0}^{\tan^{-1}\frac{L}{y}} \frac{\sec^2 v + \sec v \tan v}{\sec v + \tan v} \ dv

w=secv+tanv\displaystyle w = \sec v + \tan v
dw=secvtanv+sec2v dv\displaystyle dw = \sec v \tan v + \sec^2 v \ dv

V=2λkv=0v=tan1Ly1w dw=2λklnwv=0v=tan1Ly\displaystyle V = 2\lambda k \int_{v = 0}^{v = \tan^{-1}\frac{L}{y}} \frac{1}{w} \ dw = 2\lambda k\ln w \bigg|_{v=0}^{v = \tan^{-1}\frac{L}{y}}


=2λkln(secv+tanv)v=0v=tan1Ly\displaystyle = 2\lambda k\ln (\sec v + \tan v) \bigg|_{v=0}^{v = \tan^{-1}\frac{L}{y}}


=2λk[ln(sectan1Ly+tantan1Ly)ln(sec0tan0)]\displaystyle = 2\lambda k \left[\ln\left(\sec \tan^{-1}\frac{L}{y} + \tan \tan^{-1}\frac{L}{y}\right) - \ln(\sec 0 - \tan 0)\right]


=2λk[ln(L2+y2y+Ly)ln1]\displaystyle = 2\lambda k\left[\ln \left(\frac{\sqrt{L^2 + y^2}}{y} + \frac{L}{y}\right) - \ln 1\right]


=2λkln(L2+y2y+Ly)\displaystyle = 2\lambda k\ln \left(\frac{\sqrt{L^2 + y^2}}{y} + \frac{L}{y}\right)


=kQLln(L2+y2+Ly)\displaystyle = \frac{kQ}{L}\ln \left(\frac{\sqrt{L^2 + y^2} + L}{y} \right)
 
Last edited:
Top