thinking skill

cherrie3sg

New member
Joined
Jul 18, 2010
Messages
1
One tap fills a tank in 5 mins and the 2nd tap fills the same tank in 3 mins. how long does it take to fill the tank if both taps are on? :D
 
Hello, cherrie3sg!

One tap fills a tank in 5 mins and the 2nd tap fills the same tank in 3 mins.
How long does it take to fill the tank if both taps are on?

The first tap takes 5 minutes to fill the tank.\displaystyle \text{The first tap takes 5 minutes to fill the tank.}
. . In one minute, it can fill 15 of the tank.\displaystyle \text{In one minute, it can fill }\tfrac{1}{5}\text{ of the tank.}

The second tap takes 3 minutes to fill the tank.\displaystyle \text{The second tap takes 3 minutes to fill the tank.}
. . In one minute, it can fill 13 of the tank.\displaystyle \text{In one minute, it can fill } \tfrac{1}{3}\text{ of the tank.}

Together, in one minute, they can fill 15+13=815 of the tank.\displaystyle \text{Together, in one minute, they can fill }\tfrac{1}{5} + \tfrac{1}{3} \:=\:\tfrac{8}{15}\text{ of the tank.}

Therefore, together they can fill the tank in 1815=158=178 minutes.\displaystyle \text{Therefore, together they can fill the tank in }\frac{1}{\frac{8}{15}} \:=\:\tfrac{15}{8} \:=\:1\tfrac{7}{8}\text{ minutes.}

 
cheerie3sg, another way to look at it.\displaystyle cheerie3sg, \ another \ way \ to \ look \ at \ it.

Ones rate multiply by the time it takes one to complete the job = unity(1).\displaystyle One's \ rate \ multiply \ by \ the \ time \ it \ takes \ one \ to \ complete \ the \ job \ = \ unity(1).

Hence, Rate X Time = Fraction of Work Done.\displaystyle Hence, \ Rate \ X \ Time \ = \ Fraction \ of \ Work \ Done.

In other words, if ones rate is 1/5, then it would take 5 minutes to complete the job\displaystyle In \ other \ words, \ if \ one's \ rate \ is \ 1/5, \ then \ it \ would \ take \ 5 \ minutes \ to \ complete \ the \ job

1/5 X 5 = 5/5 =1 unity, job is completed.\displaystyle 1/5 \ X \ 5 \ = \ 5/5 \ =1 \ unity, \ job \ is \ completed.

Now, two taps working in unison with different rates will complete the job by the lesser of\displaystyle Now, \ two \ taps \ working \ in \ unison \ with \ different \ rates \ will \ complete \ the \ job \ by \ the \ lesser \ of

their respective time, (common sense)\displaystyle their \ respective \ time, \ (common \ sense)

Ergo, rate of first tap X time(t) = fraction of its work done, = t/5\displaystyle Ergo, \ rate \ of \ first \ tap \ X \ time(t) \ = \ fraction \ of \ its \ work \ done, \ = \ t/5

and rate of second tap X time(t) = fraction of its work done, = t/3\displaystyle and \ rate \ of \ second \ tap \ X \ time(t) \ = \ fraction \ of \ its \ work \ done, \ = \ t/3

Therefore, the fraction of work done by the first tap combined with the fraction\displaystyle Therefore, \ the \ fraction \ of \ work \ done \ by \ the \ first \ tap \ combined \ with \ the \ fraction

of work done by the second tap must equal the whole piece of work, or 1;\displaystyle of \ work \ done \ by \ the \ second \ tap \ must \ equal \ the \ whole \ piece \ of \ work, \ or \ 1;

hence, solution: t/5+t/3 = 1      t = 15/8 minutes, the time it takes when they\displaystyle hence, \ solution: \ t/5+t/3 \ = \ 1 \ \implies \ t \ = \ 15/8 \ minutes, \ the \ time \ it \ takes \ when \ they

are both working together.\displaystyle are \ both \ working \ together.
 
cherrie3sg said:
One tap fills a tank in 5 mins and the 2nd tap fills the same tank in 3 mins. how long does it take to fill the tank if both taps are on? :D

If the taps were filling seperate tanks concurrently,
then after 3 minutes, one tank would be full and the other will be full to 35\displaystyle \frac{3}{5}ths capacity.

That's 85\displaystyle \frac{8}{5} tanks filled.

3(58) mins....85(58) tanks = 1 tank.\displaystyle 3\left(\frac{5}{8}\right)\ mins....\frac{8}{5}\left(\frac{5}{8}\right)\ tanks\ =\ 1\ tank.
 
Top