Three mutually exclusive events occur with probabilities [MATH]P(E_1) = 0.25, P(E_2) = 0.35, [/math] and [math]P(E_3) = 0.40[/MATH]. Other probabilities are [MATH]P(B|E_1) = 0.24, P(B|E_2) = 0.18, P(B|E_3) = 0.58[/MATH]
Find [MATH]P(E_1|B)[/MATH].
[MATH]P(B|E_1) = \frac{P(B \cap E_1)}{P(E_1)}[/MATH]
[MATH]P(B \cap E_1) = P(B|E_1)P(E_1) = P(E_1 \cap B)[/MATH]
now
[MATH]P(E_1|B) = \frac{P(E_1 \cap B)}{P(B)} = \frac{P(B|E_1)P(E_1)}{P(B)}[/MATH]
I am stuck here because I don't have the probability, [MATH]P(B)[/MATH]
Find [MATH]P(E_1|B)[/MATH].
[MATH]P(B|E_1) = \frac{P(B \cap E_1)}{P(E_1)}[/MATH]
[MATH]P(B \cap E_1) = P(B|E_1)P(E_1) = P(E_1 \cap B)[/MATH]
now
[MATH]P(E_1|B) = \frac{P(E_1 \cap B)}{P(B)} = \frac{P(B|E_1)P(E_1)}{P(B)}[/MATH]
I am stuck here because I don't have the probability, [MATH]P(B)[/MATH]