Transformational geometry: Given the lines L and K, find....

oshea.emma

New member
Joined
Jun 12, 2006
Messages
19
:eek:
Given the lines L : y=4x and K: x=4y.
f is the transformation (x,y)->(x',y')
where x'=2x-y and y'=x+3y
I'm asked to find the measure of the ACUTE angle between f(L) and f(K) correct to the nearest degree?
:shock:
What will i use to find the angle?
Also what's the point in these types of questions? :(
 
Re: Transformational geometry question. Genius alert!!

Hello, oshea.emma!

Given the lines L:  y=4x\displaystyle L:\;y\,=\,4x and K:x=4y\displaystyle K:\:x\,=\,4y

f\displaystyle f is the transformation: \(\displaystyle \,(x,y)\:\rightarrow\:(x',y')\), where x=2xy\displaystyle x'\:=\:2x\,-\,y and y=x+3y\displaystyle y'\:=\:x\,+\,3y

Find the measure of the acute angle between f(L)\displaystyle f(L) and f(K)\displaystyle f(K) to the nearest degree

Game plan

Find the slopes of F(L)\displaystyle F(L) and f(K):  m1,  m2.\displaystyle f(K):\;m_1,\;m_2.

        \displaystyle \;\;\;\;then use the formula: tanθ  =  m2m11+m1m2\displaystyle \,\tan\theta \;=\;\frac{m_2 - m_1}{1\,+\,m_1m_2}


On line L\displaystyle L, choose two points: (0,0),  (1,4)\displaystyle \,(0,0),\;(1,4)

    f(0,0)  =  (200,0+30)  =  (0,0)\displaystyle \;\;f(0,0) \;=\;(2\cdot0-0,\,0+3\cdot0) \;= \;(0,0)
    f(1,4)  =  (214,1+34)  =  (2,13)\displaystyle \;\;f(1,4)\;=\;(2\cdot1-4,\,1+3\cdot4) \;=\;(-2,13)

    \displaystyle \;\;The slope of f(L)\displaystyle f(L) is:m1=13020=132\displaystyle \,m_1 \:=\:\frac{13\,-\,0}{-2\,-\,0}\:=\:-\frac{13}{2}


On line K\displaystyle K, choose two points: (0,0),  (4,1)\displaystyle \,(0,0),\;(4,1)

    f(0,0)  =  (0,0)\displaystyle \;\;f(0,0) \;=\;(0,0)
    f(4,1)  =  241,4=31)  =  (7,7)\displaystyle \;\;f(4,1)\;=\;2\cdot4-1,\,4=3\cdot1)\;=\;(7,7)

    \displaystyle \;\;The slope of f(K)\displaystyle f(K) is: m2  =7070=1\displaystyle \,m_2\;=\:\frac{7\,-\,0}{7\,-\,0} \:=\:1

Hence, we have: \(\displaystyle \,\tan\theta \;= \;\L\frac{1\,-\,\left(-\frac{13}{2}\right)}{1\,+\,\left(-\frac{13}{2}\right)(1)}\)  =  1511\displaystyle \;= \;-\frac{15}{11}

Since we want the acute angle, we use: 1511=1511\displaystyle \,\left|-\frac{15}{11}\right|\:=\:\frac{15}{11}

We have: tanθ=1511\displaystyle \,\tan\theta\:=\:\frac{15}{11}

    \displaystyle \;\;Therefore: θ=tan1(1511)=53.74616226  \displaystyle \,\theta\:=\:\tan^{-1}\left(\frac{15}{11}\right)\:=\:53.74616226 \:\approx\;54°

 
oshea.emma said:
wow,
How did you get so good at maths?

Well he post on MMB, this website, and Sparknotes consistently so he keeps in touch w/his math sustenance. Plus he is a retired math professor and is a math major. He has got it in him.
 
oshea.emma said:
fantastic!!

Yes and you can be fantastic at math as well if you put forth the commitment. I'd say that is fantastic as well! :)
 
Top