Trig. Identity: 8sin^2(x/2)cos^2(x/2)=1-cos2x

rebmik

New member
Joined
Oct 26, 2006
Messages
4
If anyone can point me in the right direction verifying this idenity I would really appreciate it. I am at a total loss.

8sin^2(x/2)cos^2(x/2)=1-cos2x

Thanks in advance for any help.
 
Re: Help -- Trouble w/ Trig. Identities

Hello, rebmik!

You're expected to be familiar with these identities:

. . 2sinθcosθ=sin2θ        sin2θ=1cos2θ2\displaystyle 2\sin\theta\cos\theta\:=\:\sin2\theta \;\;\;\;\sin^2\theta\:=\:\frac{1\,-\,\cos2\theta}{2}


8sin2(x2)cos2(x2)  =  1cos2x\displaystyle 8\sin^2\left(\frac{x}{2}\right)\cos^2\left(\frac{x}{2}\right)\;=\;1\,-\,\cos2x

We have: 8sin2(x2)cos2(x2)\displaystyle \:8\sin^2\left(\frac{x}{2}\right)\cos^2\left(\frac{x}{2}\right)

. . . . . =  2[4sin2(x2)cos2(x2)]\displaystyle = \;2\left[4\sin^2\left(\frac{x}{2}\right)\cos^2\left(\frac{x}{2}\right)\right]

. . . . . =  2[sin(x2)cos(x2)]2\displaystyle = \;2\underbrace{\left[\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)\right]}^2

. . . . . =          2(sinx)\displaystyle = \;\;\;\;\;2\overbrace{\left(\sin x\right)}2\displaystyle ^2

We have: 2sin2x\displaystyle \:2\cdot\underbrace{\sin^2x}

. . . . .=  2(1cos2x2)\displaystyle = \;2\overbrace{\left(\frac{1\,-\,\cos2x}{2}\right)}

. . . . .=  1cos2x\displaystyle = \;1\,-\,\cos2x

 
Hi Soroban,

Thank you soooo much. I am familiar with those identities unfortunately, it just wasn't coming to me.

You make it look so easy!!!

Thanks again!
 
Top