I made this one up so to see the way to solve it. I'm thinking a problem like this might not come into existence, and it isn't solvable.
\(\displaystyle \int \cos^{2}9x \sin x dx\)
\(\displaystyle u = \cos 9x\)
\(\displaystyle du = -\sin 9x dx\)
\(\displaystyle -\dfrac{1}{9}du = \sin x dx\)
\(\displaystyle -\dfrac{1}{9} \int u^{2} du\)
\(\displaystyle \rightarrow -\dfrac{1}{9} \dfrac{u^{3}}{3} + C\)
\(\displaystyle \rightarrow -\dfrac{u^{3}}{27} + C\)
\(\displaystyle \rightarrow -\dfrac{\sin^{3}9x}{27} + C\)
\(\displaystyle \int \cos^{2}9x \sin x dx\)
\(\displaystyle u = \cos 9x\)
\(\displaystyle du = -\sin 9x dx\)
\(\displaystyle -\dfrac{1}{9}du = \sin x dx\)
\(\displaystyle -\dfrac{1}{9} \int u^{2} du\)
\(\displaystyle \rightarrow -\dfrac{1}{9} \dfrac{u^{3}}{3} + C\)
\(\displaystyle \rightarrow -\dfrac{u^{3}}{27} + C\)
\(\displaystyle \rightarrow -\dfrac{\sin^{3}9x}{27} + C\)
Last edited: