TRIG!!!

taylorann92

New member
Joined
May 4, 2010
Messages
4
I need helppp!

Verify that (CosX / 1-SinX)-(1+SinX/CosX)= 0

i have been trying to figure this out for two days and i just keep starting over!!
 
cos(x)1sin(x)1+sin(x)cos(x) = 0\displaystyle \frac{cos(x)}{1-sin(x)}-\frac{1+sin(x)}{cos(x)} \ = \ 0

cos2(x)[1+sin(x)][1sin(x)]cos(x)[1sin(x)] = 0\displaystyle \frac{cos^2(x)-[1+sin(x)][1-sin(x)]}{cos(x)[1-sin(x)]} \ = \ 0

cos2(x)[1sin2(x)]cos(x)[1sin(x)] = 0\displaystyle \frac{cos^2(x)-[1-sin^2(x)]}{cos(x)[1-sin(x)]} \ = \ 0

cos2(x)cos2(x)cos(x)[1sin(x)] = 0\displaystyle \frac{cos^2(x)-cos^2(x)}{cos(x)[1-sin(x)]} \ = \ 0

0cos(x)[1sin(x)] = 0, 0 = 0\displaystyle \frac{0}{cos(x)[1-sin(x)]} \ = \ 0, \ 0 \ = \ 0

Addendum: Any restrictions?\displaystyle Addendum: \ Any \ restrictions?
 
Is there anyway you could explain how you got the first step? It is okay if you dont but I am just confused how the cos^2 happened..
 
Hello, taylorann92!

Verify that:   cosx1sinx1+sinxcosx  =  0\displaystyle \text{Verify that: }\;\frac{\cos x}{1-\sin x} - \frac{1 +\sin x}{\cos x} \;=\;0

Multiply the first fraction by 1+sinx1+sinx:\displaystyle \text{Multiply the first fraction by }\:\frac{1+\sin x}{1+\sin x}:

. . . cosx1sinx1+sinx1+sinx1+sinxcosx\displaystyle \frac{\cos x}{1-\sin x}\cdot\frac{1+\sin x}{1+\sin x} - \frac{1+\sin x}{\cos x}

. . . =  cosx(1+sinx)1sin2 ⁣x1+sinxcosx\displaystyle =\;\frac{\cos x(1+\sin x)}{1-\sin^2\!x} - \frac{1+\sin x}{\cos x}

. . . =  cos(1+sinx)cos2 ⁣x1+sinxcosx\displaystyle =\;\frac{\cos(1+\sin x)}{\cos^2\!x} - \frac{1+\sin x}{\cos x}

. . . =  1+sinxcosx1+sinxcosx\displaystyle =\;\frac{1+\sin x}{\cos x} - \frac{1+\sin x}{\cos x}

. . . =  0\displaystyle =\;\qquad 0

 
cos(x) times cos(x) = [cos(x)]2 = cos2(x).\displaystyle cos(x) \ times \ cos(x) \ = \ [cos(x)]^2 \ = \ cos^2(x).

Note: If you dont have a firm grasp of algebra, then doing trig. identities can\displaystyle Note: \ If \ you \ don't \ have \ a \ firm \ grasp \ of \ algebra, \ then \ doing \ trig. \ identities \ can

become quite burdensome.\displaystyle become \ quite \ burdensome.
 
Top