two question about limit. help please!

asomeras

New member
Joined
Oct 23, 2014
Messages
2
\(\displaystyle \mbox{Problem 1.12. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x^4\, \cos\left(\frac{2}{x}\right)}\)

\(\displaystyle \mbox{Problem 1.13. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x\, \sin\left(\frac{1}{x}\right)}\)

can someone explain how can i solve these questions?
 
Last edited by a moderator:
\(\displaystyle \mbox{Problem 1.12. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x^4\, \cos\left(\frac{2}{x}\right)}\)

\(\displaystyle \mbox{Problem 1.13. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x\, \sin\left(\frac{1}{x}\right)}\)

can someone explain how can i solve these questions?

Is it true that \(\displaystyle - {x^4} \le {x^4}\cos \left( {\dfrac{2}{x}} \right) \le {x^4}\quad ?\)

Is it true that \(\displaystyle x\sin \left( {{x^{ - 1}}} \right) = \dfrac{{\sin \left( {{x^{ - 1}}} \right)}}{{{x^{ - 1}}}}\quad ?\)
 
Last edited by a moderator:
Is it true that \(\displaystyle - {x^4} \le {x^4}\cos \left( {\dfrac{2}{x}} \right) \le {x^4}\quad ?\)

Is it true that \(\displaystyle x\sin \left( {{x^{ - 1}}} \right) = \dfrac{{\sin \left( {{x^{ - 1}}} \right)}}{{{x^{ - 1}}}}\quad ?\)

i do not understand what do you mean :?
 
\(\displaystyle \mbox{Problem 1.12. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x^4\, \cos\left(\frac{2}{x}\right)}\)

\(\displaystyle \mbox{Problem 1.13. Evaluate the limit }\, \displaystyle{\lim_{x\, \rightarrow\, 0}\, x\, \sin\left(\frac{1}{x}\right)}\)

can someone explain how can i solve these questions?

If we have the limit of the product of two functions, and one is bounded and the other goes to zero, then the limit of the product is zero. Are you allowed to use this fact? That is, has it been proved in class or has your instructor given you this? If so consider that the sine and cosine are bounded. If you can't use it, can you prove it so that you can use it?
 
Top