Undetermined Coefficients/Var. of Parameters: y'' - y' = e^x

paulxzt

Junior Member
Joined
Aug 30, 2006
Messages
65
y'' - y' = e^x

a) solve using undetermined coefficient
b) solve using variation of parameters

a)
auxiliary eq: r^2 - r = 0, r = 0, 1

yc(x) = C1e^x + C2

yp(x) = xAe^x

I figured out y' and y'' and plugged it in and solved for A to get A = 1 and
y(x) = C1e^x + C2 + xe^x.

am i doing this right?
can someone help me get started on VAP
ho
 
Re: Undetermined Coefficients/Var. of Parameters: y'' - y' =

Hello, paulxzt!

yy=ex\displaystyle y''\,-\,y' \:= \:e^x

a) Solve using undetermined coefficient
b) Solve using variation of parameters


a) auxiliary eq: r2r=0        r=0,1            yc(x)=C1ex+C2\displaystyle \:r^2\, -\,r \:= \:0\;\;\Rightarrow\;\;r \:= \:0,\,1\;\;\;\Rightarrow\;\;\;y_c(x) \:= \:C_1e^x\,+\,C_2

yp(x)=xAex\displaystyle y_p(x) \:= \:xAe^x
I figured out y\displaystyle y' and y\displaystyle y'' and plugged it in, and solved for A\displaystyle A to get: A=1\displaystyle \,A \,=\, 1

Therefore: y(x)=C1ex+C2+xex\displaystyle \:y(x) \:= \:C_1e^x\,+\,C_2\,+\,xe^x

Am i doing this right? . . . . Yes! . Good work!

Can someone help me get started on VAP?

We have: \(\displaystyle \:y_c \;=\;C_1e^x\,+\,C_2\\)
. . where C1\displaystyle C_1 and C2\displaystyle C_2 are functions of x.\displaystyle x.

Differentiate: y  =  C1ex+C1ex+C2        \displaystyle \:y'\;=\;C_1e^x\,+\,C_1'e^x\,+\,C_2'\;\;\Rightarrow\;\;C1ex+C2=0\displaystyle {\color{blue} C_1'e^x\,+\,C_2' \:=\:0}

We have: y=C1ex\displaystyle \:y' \:=\:C_1e^x
Differentiate: y  =  C1ex+C1ex        \displaystyle \:y'' \;=\;C_1e^x\,+\,C_1'e^x\;\;\Rightarrow\;\;C1ex=ex\displaystyle {\color{blue}C_1'e^x\:=\:e^x}

I assume you know the rest . . .
. . Solve the system of equation for C1\displaystyle C_1' and C2\displaystyle C_2'
. . Determine C1\displaystyle C_1 and C2\displaystyle C_2.
. . Substitute into yc\displaystyle y_c

 
Top