Uniform convergence

steve.b

New member
Joined
Sep 26, 2010
Messages
13
Decide if they uniformly convergent:

n=1x21+n2x2\displaystyle \sum_{n=1}^{\infty}\frac{x^2}{1+n^2x^2} on [0,1]
n=11n2enx2\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}e^{-nx^2} on R\displaystyle \mathbb R

Thank you in advance!
 
steve.b said:
Decide if they uniformly convergent:

Have you tried the Weiserstrass M-Test?. Abel's Convergence Test?. Dirichlet's Test?.

n=1x21+n2x2\displaystyle \sum_{n=1}^{\infty}\frac{x^2}{1+n^2x^2} on [0,1]

This series is convergent and has the form of

n=11n2+a2=12acoth(πa)12a2\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^{2}+a^{2}}=\frac{1}{2a}coth(\pi a)-\frac{1}{2a^{2}}.

In this case,

a=1x\displaystyle a=\frac{1}{x} and we get convergence to:

πx2coth(πx)x22\displaystyle \frac{\pi x}{2}coth(\frac{\pi}{x})-\frac{x^{2}}{2}.

i.e. if x=1, then it converges to n=111+n2=π2coth(π)12\displaystyle \sum_{n=1}^{\infty}\frac{1}{1+n^{2}}=\frac{\pi}{2}coth(\pi)-\frac{1}{2}


n=11n2enx2\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2}e^{-nx^2} on R\displaystyle \mathbb R

This series is also convergent and is directly related to what is known as the dilogarithm.

Li2(z)=n=1znn2\displaystyle Li_{2}(z)=\sum_{n=1}^{\infty}\frac{z^{n}}{n^{2}}

In this case, z=ex2\displaystyle z=e^{-x^{2}} and we get:

Li2(ex2)\displaystyle Li_{2}(e^{-x^{2}}).

This is a more advanced topic and can be googled if you're interested.
 
Top