∂t2∂2y=81∂x2∂2y
−∞<x<∞, t>0
y(x,0)=x2
∂t∂y(x,0)=3
y(x,t)=21[f(x+ct)+f(x−ct)]+2c1∫x−ctx+ctg(s) ds
−∞<x<∞, t>0
y(x,0)=x2
∂t∂y(x,0)=3
I know how to solve this problem from scratch, but I don't know how to solve it by d'Alembert's solution.
The d'Alembert's solution is:
The d'Alembert's solution is:
y(x,t)=21[f(x+ct)+f(x−ct)]+2c1∫x−ctx+ctg(s) ds
How to use this solution to solve the differential equation directly?