Use d'Alembert's Solution to Solve the Wave Equation

mario99

Full Member
Joined
Aug 19, 2020
Messages
882
2yt2=812yx2\frac{\partial^2 y}{\partial t^2} = 81\frac{\partial^2 y}{\partial x^2}
<x<,   t>0-\infty < x < \infty, \ \ \ t > 0
y(x,0)=x2y(x,0) = x^2
yt(x,0)=3\frac{\partial y}{\partial t}(x,0) = 3

I know how to solve this problem from scratch, but I don't know how to solve it by d'Alembert's solution.

The d'Alembert's solution is:​

y(x,t)=12[f(x+ct)+f(xct)]+12cxctx+ctg(s) dsy(x,t) = \frac{1}{2}[f(x + ct) + f(x - ct)] + \frac{1}{2c}\int_{x-ct}^{x+ct} g(s) \ ds
How to use this solution to solve the differential equation directly?
 
I think you can simply plug in c=81=9c = \sqrt{81} = 9, f(x)=x2f(x) = x^2, g(x)=3g(x) = 3.
 
This means that the solution is:

y(x,t)=12[f(x+9t)+f(x9t)]+129x9tx+9t3 ds\displaystyle y(x,t) = \frac{1}{2}\left[f(x + 9t) + f(x - 9t)\right] + \frac{1}{2*9}\int_{x-9t}^{x+9t} 3 \ ds


=12[(x+9t)2+(x9t)2]+318[(x+9t)(x9t)]\displaystyle = \frac{1}{2}\left[(x + 9t)^2 + (x - 9t)^2\right] + \frac{3}{18}\left[(x+9t) - (x-9t)\right]


=12[x2+18tx+81t2+x218tx+81t2]+16[x+9tx+9t]\displaystyle = \frac{1}{2}\left[x^2 + 18tx + 81t^2 + x^2 - 18tx + 81t^2\right] + \frac{1}{6}\left[x+9t - x + 9t\right]


=12[2x2+162t2]+16[18t]\displaystyle = \frac{1}{2}\left[2x^2 + 162t^2\right] + \frac{1}{6}\left[18t\right]


=x2+81t2+3t\displaystyle = x^2 + 81t^2+ 3t


Thank you MaxWong. Your help was so Epic.

🫡
 
Top