A armn91 New member Joined Mar 31, 2023 Messages 23 May 3, 2023 #1 Hello all, Could anybody let me know if what I have been doing in this activity is correct? Thank you! Attachments jpg2pdf(3).pdf 6.3 MB · Views: 5
Hello all, Could anybody let me know if what I have been doing in this activity is correct? Thank you!
N nasi112 Full Member Joined Aug 23, 2020 Messages 689 May 3, 2023 #2 The caluclation in last step was wrong. \(\displaystyle \lim_{n\rightarrow \infty}\left|\frac{1}{(1+\frac{1}{n})^{2n}(n + 1)^{2}}\right| = \left|\frac{\lim_{n\rightarrow \infty}\frac{1}{(n + 1)^{2}}}{\lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n}}\right| \neq \infty\) Here was your mistake: \(\displaystyle \lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n} \neq 0\)
The caluclation in last step was wrong. \(\displaystyle \lim_{n\rightarrow \infty}\left|\frac{1}{(1+\frac{1}{n})^{2n}(n + 1)^{2}}\right| = \left|\frac{\lim_{n\rightarrow \infty}\frac{1}{(n + 1)^{2}}}{\lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n}}\right| \neq \infty\) Here was your mistake: \(\displaystyle \lim_{n\rightarrow \infty}(1+\frac{1}{n})^{2n} \neq 0\)
A armn91 New member Joined Mar 31, 2023 Messages 23 May 3, 2023 #3 Thank you for the indications. Could you please let me know if this is correct now? Attachments PXL_20230504_020215297.MP.jpg 7.2 MB · Views: 2
N nasi112 Full Member Joined Aug 23, 2020 Messages 689 May 3, 2023 #4 The final answer is correct but the calculations are wrong. \(\displaystyle \lim_{n\rightarrow \infty}\left(\frac{n}{n+1}\right)^{2n} \neq 1\)
The final answer is correct but the calculations are wrong. \(\displaystyle \lim_{n\rightarrow \infty}\left(\frac{n}{n+1}\right)^{2n} \neq 1\)
BeachBanana Senior Member Joined Nov 19, 2021 Messages 2,281 May 3, 2023 #5 [math]y = \left(\frac{n}{n+1}\right)^{2n}\\ \ln y =2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = \lim_{n \to \infty} 2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = 2 \lim_{n \to \infty} \dfrac{ \ln \left(\frac{n}{n+1}\right)}{\dfrac{1}{n}}\\[/math] Proceed with L'Hopital and undo the log.
[math]y = \left(\frac{n}{n+1}\right)^{2n}\\ \ln y =2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = \lim_{n \to \infty} 2n \ln \left(\frac{n}{n+1}\right)\\ \lim_{n \to \infty} \ln y = 2 \lim_{n \to \infty} \dfrac{ \ln \left(\frac{n}{n+1}\right)}{\dfrac{1}{n}}\\[/math] Proceed with L'Hopital and undo the log.
skeeter Elite Member Joined Dec 15, 2005 Messages 3,204 May 4, 2023 #6 note [imath]\left(\dfrac{n}{n+1}\right)^{2n} = \left(\dfrac{n+1}{n}\right)^{-2n}[/imath] [imath]\displaystyle \lim_{n \to \infty} \left(\dfrac{n+1}{n}\right)^{-2n}[/imath] [imath]\displaystyle {\color{red}\lim_{n \to \infty}} \bigg[{\color{red}\left(1 + \dfrac{1}{n}\right)^{n}}\bigg]^{-2}[/imath] are you familiar with that basic limit ?
note [imath]\left(\dfrac{n}{n+1}\right)^{2n} = \left(\dfrac{n+1}{n}\right)^{-2n}[/imath] [imath]\displaystyle \lim_{n \to \infty} \left(\dfrac{n+1}{n}\right)^{-2n}[/imath] [imath]\displaystyle {\color{red}\lim_{n \to \infty}} \bigg[{\color{red}\left(1 + \dfrac{1}{n}\right)^{n}}\bigg]^{-2}[/imath] are you familiar with that basic limit ?