Using convergence/divergence tests on (2^[2k]*k!*k!)/(2k!)

ksdhart

Full Member
Joined
Aug 1, 2014
Messages
384
I'm having difficulties with a problem from my Calc 3 course. The problem text says:

In exercises 29-34, use the ratio test to analyze whether the given series converges or diverges. If the ratio test is inconclusive, use a different test to analyze the series.

33. k=1246(2k)135(2k1)\displaystyle \displaystyle \sum _{k=1}^{\infty }\frac{2\cdot 4\cdot 6\cdot \cdot \cdot \left(2k\right)}{1\cdot 3\cdot 5\cdot \cdot \cdot \left(2k-1\right)}

My first step was to convert the numerator and denominator into expressions of k-factorial and apply the ratio test:

246(2k)=2k(123k)=2kk!\displaystyle 2\cdot 4\cdot 6\cdot \cdot \cdot \left(2k\right)=2^k\left(1\cdot 2\cdot 3\cdot \cdot \cdot k\right)=2^k\cdot k!

135(2k1)=(2k)!246(2k)=(2k!)2kk!\displaystyle 1\cdot 3\cdot 5\cdot \cdot \cdot \left(2k-1\right)=\frac{\left(2k\right)!}{2\cdot 4\cdot 6\cdot \cdot \cdot \left(2k\right)}=\frac{\left(2k!\right)}{2^k\cdot k!}

ak=(2kk!)2kk!(2k)!=22kk!k!(2k)!\displaystyle a_k=\left(2^k\cdot k!\right)\cdot \frac{2^k\cdot k!}{\left(2k\right)!}=\frac{2^{2k}\cdot k!\cdot k!}{\left(2k\right)!}

ak+1=22k+2(k+1)!(k+1)!(2k+2)!\displaystyle a_{k+1}=\frac{2^{2k+2}\cdot \left(k+1\right)!\cdot \left(k+1\right)!}{\left(2k+2\right)!}

ak+1ak=22k+2(k+1)!(k+1)!(2k+2)!(2k)!22kk!k!=22k+2(k+1)!(k+1)!(2k)!(2k+2)!22kk!k!\displaystyle \frac{a_{k+1}}{a_k}=\frac{2^{2k+2}\cdot \left(k+1\right)!\cdot \:\left(k+1\right)!}{\left(2k+2\right)!}\cdot \frac{\left(2k\right)!}{2^{2k}\cdot k!\cdot k!}=\frac{2^{2k+2}\cdot \left(k+1\right)!\cdot \left(k+1\right)!\cdot \left(2k\right)!}{\left(2k+2\right)!\cdot 2^{2k}\cdot k!\cdot k!}

ak+1ak=4(k+1)(k+1)(2k+1)(2k+2)=2k+22k+1\displaystyle \frac{a_{k+1}}{a_k}=\frac{4\left(k+1\right)\left(k+1\right)}{\left(2k+1\right)\left(2k+2\right)}= \frac{2k+2}{2k+1}

With the expression in a simpler form, I took the limit:

ρ=limk(ak+1ak)=limk(2k+22k+1)=limk(22)=1\displaystyle \displaystyle \rho =\lim _{k\to \infty }\left(\frac{a_{k+1}}{a_k}\right)=\lim _{k\to \infty }\left(\frac{2k+2}{2k+1}\right)=\lim _{k\to \infty }\left(\frac{2}{2}\right)=1

Since rho is 1, the ratio test is inconclusive. Now, the instructions say to use a different test. But that's where I'm having problems. I thought using the root test might be my best bet.

limk(22kk!k!(2k)!k)=limk(4k!kk!k(2k)!k)\displaystyle \displaystyle \lim _{k\to \infty }\left(\sqrt[k]{\frac{2^{2k}\cdot k!\cdot k!}{\left(2k\right)!}}\right)=\lim _{k\to \infty }\left(\frac{4\cdot \sqrt[k]{k!}\cdot \sqrt[k]{k!}}{\sqrt[k]{\left(2k\right)!}}\right)

I know from a previous exercise that limk(k!k)=\displaystyle \displaystyle \lim _{k\to \infty }\left(\sqrt[k]{k!}\right)=\infty and from that I also know that limk((2k)!k)=\displaystyle \displaystyle \lim _{k\to \infty }\left(\sqrt[k]{\left(2k\right)!}\right)=\infty. However, that still leaves me with an indeterminate form. I'd need to figure out whether the numerator grows faster than the denominator or vice versa. And I suspect I'd need to use L'Hôpital's rule for that... but I don't know how to take the derivative of k-factorial, so I'm at a loss right now.

Any help would be greatly appreciated.
 
Notice that for n>1\displaystyle n> 1,

an=2143652n2n1>2111\displaystyle a_n = \dfrac{2}{1}\cdot \dfrac{4}{3}\cdot \dfrac{6}{5} \cdots \dfrac{2n}{2n-1} > 2\cdot 1\cdot 1\cdots 1
 
Wow. I was way overthinking this then. I got stuck in the mindset of using the closed form for the sequence, and I failed to see what was right in front of me. Each successive term in the sequence is more than 2, so the series must diverge. Thanks for the course correction.
 
Top