Verify the identity

PanTh3R

New member
Joined
Feb 21, 2010
Messages
2
Verify the Identity:

secθ11cosθ=secθ\displaystyle \frac{\sec{\theta}-1}{1-\cos{\theta}} = \sec\theta

i did... secθ11cosθ1+cosθ1+cosθ\displaystyle \frac{\sec{\theta}-1}{1-\cos{\theta}}*\frac{1+\cos{\theta}}{1+\cos{\theta}}

(secθ1)(1+cosθ)1cos2θ\displaystyle \frac{(\sec\theta-1)(1+\cos\theta)}{1-\cos^2\theta}


secθ+secθcosθ1cosθsin2θ\displaystyle \frac{\sec\theta+\sec\theta\cos\theta-1-\cos\theta}{\sin^2\theta}

and now im stuck i think i did the first steps right...can any one help please?
 
PanTh3R said:
Verify the Identity:

secθ11cosθ=cosθ\displaystyle \frac{\sec{\theta}-1}{1-\cos{\theta}} = \cos\theta This is not an identity.

Did you make a typographical error?

We can get an identity, if we change the righthand side to the secant of theta.

secθ11cosθ=secθ\displaystyle \frac{\sec{\theta}-1}{1-\cos{\theta}} = \sec{\theta}

You arrived at the following.

secθ+secθcosθ1cosθsin2θ\displaystyle \frac{\sec\theta+\sec\theta\cos\theta-1-\cos\theta}{\sin^2\theta}

As soon as we think of sec(?) as 1/cos(?), it's an easy step to simplify sec(?) cos(?) - 1, in the numerator above.

Then subtract cos(?) from sec(?), in the resulting numerator. From there, it's just a compound ratio simplification.

The entire verification of this identity is about three steps, if the first step is restating the secant functions in terms of cosine. 8-)

secθ11cosθ=secθ\displaystyle \frac{\sec{\theta}-1}{1-\cos{\theta}} = \sec{\theta}

1cosθcosθcosθ1cosθ=1cosθ\displaystyle \frac{\frac{1}{cos\theta} - \frac{cos\theta}{cos\theta}}{1 - cos\theta} = \frac{1}{cos\theta}

1cosθcosθ1cosθ=1cosθ\displaystyle \frac{\frac{1 - cos\theta}{cos\theta}}{1 - cos\theta} = \frac{1}{cos\theta}

1cosθcosθ11cosθ=1cosθ\displaystyle \frac{1 - cos\theta}{cos\theta} \cdot \frac{1}{1 - cos\theta} = \frac{1}{cos\theta}

:idea: Several identities that involve secant, cosecant, and sometimes tangent and cotangent, can be verified more easily by first restating everything in terms of sine and cosine.
 
Hello, PanTh3R!

mmm444bot is right . . . There is a typo.


Verify the Identity:   secθ11cosθ  =  secθ\displaystyle \text{Verify the Identity: }\;\frac{\sec\theta - 1}{1 - \cos\theta} \;=\;\boxed{\sec\theta}

We have:   secθ111secθ\displaystyle \text{We have: }\;\frac{\sec\theta - 1}{1 - \frac{1}{\sec\theta}}

Multiply by secθsecθ ⁣:    secθ(secθ1)secθ(11secθ)  =  secθ(secθ1)secθ1  =  secθ\displaystyle \text{Multiply by }\frac{\sec\theta}{\sec\theta}\!:\;\;\frac{\sec\theta(\sec\theta - 1)}{\sec\theta\left(1 - \frac{1}{\sec\theta}\right)} \;=\;\frac{\sec\theta(\sec\theta -1)}{\sec\theta - 1} \;=\; \sec\theta

 
wow i did make a typo error it was sec(theta) :oops: thanks for helping me :mrgreen:
 
Top