Verifying an identity

coooool222

Junior Member
Joined
Jun 1, 2020
Messages
93
1/tanxsecx+1/tanx+secx=2tanx1/tanx - sec x + 1/tan x + sec x = -2tanx
I'm having a little difficulty with this

The reciprocal of 1/tan x - sec x is
cos x / sin x - cos

The reciprocal of 1/tax + sec x is
cos x/ sin x + cos

When i add these together
cos x / sin x - cos + cos x / sin x + cos x
i get 2 cos / sin x
which is then 2 cot? so how is it -2tanx
 
you really need to use parentheses around the terms in the respective denominators to make your expression clear …

1tanxsecx=cosxsinx1\dfrac{1}{\tan{x}-\sec{x}} = \dfrac{\cos{x}}{\sin{x}-1}
1tanx+secx=cosxsinx+1\dfrac{1}{\tan{x}+\sec{x}} = \dfrac{\cos{x}}{\sin{x}+1}
common denominator is (sinx1)(sinx+1)=sin2x1=cos2x(\sin{x}-1)(\sin{x}+1)=\sin^2{x}-1 = -\cos^2{x}

try adding the two expressions again …
 
multiply the two fractions …

cosxcosx1tanxsecx\dfrac{\cos{x}}{\cos{x}} \cdot \dfrac{1}{\tan{x}-\sec{x}}
… what do you get?
 
why are you multiplying with cos x / cos x isnt that 1 also why cant i do sin x / sin x
 
Last edited:
why are you multiplying with cos x / cos x
it clears the complex fraction …

cosxcosx1sinxcosx1cosx=cosxsinx1\dfrac{\cos{x}}{\cancel{\cos{x}}} \cdot \dfrac{1}{\dfrac{\sin{x}}{\cancel{\cos{x}}} - \dfrac{1}{\cancel{\cos{x}}}} = \dfrac{\cos{x}}{\sin{x}-1}
 
Top