The
> > > side of a cube < < <
is increasing at a constant rate of 0.2 centimeter per second.
The
side of a cube is one of the 6 square faces of the cube, not one of the edges of the cube.
Volume = the cube of the length of an edge or V = e3.
But as "e" is already used as a constant, you may want to type:
Let s = the length of an edge of a cube.
Then V = s3.
In terms of surface are S, what is the rate of change of the volume of the cube,
in cubic meters per second?
i know that:
S=6s^2
DA/dt=12s ds/dt
When you use S for the surface area of the cube, then you must
stay with that variable. The equation could be dS/dt = (12s)dt.
** But, we don't need dS/dt for this solution. We are not concerned
with the change of the surface area of the cube with respect to time,
only with the change of volume of the cube with respect to time,
in terms of the expression for the total surface area of the cube.
^ and ds/dt equals 0.2
DA/dt=2.4s
V=s^3
DV=3s^2
but i don't know how to put it together?