What is the series an

Axelato

New member
Joined
Apr 8, 2022
Messages
1
Hey! I got a problem for my homework that i cant solve.
I want to find an for the problem below. The word "där" means "where an is" in my language.
skärmklipp calculus.JPG

I am happy for all the help i can get. Thx.
 
I am lost by your question. You say that you want to find an, but an is given. Can you please try again explaining what you need help with?
 
Hey! I got a problem for my homework that i cant solve.
I want to find an for the problem below. The word "där" means "where an is" in my language.
View attachment 32044

I am happy for all the help i can get. Thx.
I presume what you want to find is the sum, presumably as an explicitly defined function of x.

Can you tell us what you have been learning, including what particular methods you have seen?
 
First of all, the definition of ana_n is slightly ambiguous.

an=12j=1n(12j)n!(12n)a_n = \dfrac{\dfrac{1}{2} * \displaystyle \prod_{j=1}^n \left ( \dfrac{1}{2} - j \right )}{n! * \left ( \dfrac{1}{2} - n \right )}
That does not make any sense for a0a_0 because j = 1 starts j off above n. So I suspect what is meant is

an=(j=0n12j)n!(12n).a_n = \dfrac{\displaystyle \left (\prod_{j=0}^n \dfrac{1}{2} - j \right )}{n! * \left ( \dfrac{1}{2} - n \right )}.
Let's compute some values.

a0=(120)0!(120)=1.a_0 = \dfrac{\left ( \dfrac{1}{2} - 0 \right )}{0! * \left ( \dfrac{1}{2} - 0 \right )} = 1.
a1=(120)(121)1!(121)=121=12a_1 = \dfrac{\left ( \dfrac{1}{2} - 0 \right )\left ( \dfrac{1}{2} - 1 \right )}{1! * \left ( \dfrac{1}{2} - 1 \right )} = \dfrac{\dfrac{1}{2}}{1} = \dfrac{1}{2}
a2=(120)(121)(122)2!(122)=(12)(12)2=18a_2 = \dfrac{\left ( \dfrac{1}{2} - 0 \right )\left ( \dfrac{1}{2} - 1 \right )\left ( \dfrac{1}{2} - 2 \right )}{2! * \left ( \dfrac{1}{2} - 2 \right )} =\dfrac{\left ( \dfrac{1}{2}\right )\left ( - \dfrac{1}{2} \right)}{2} = - \dfrac{1}{8}
a3=(120)(121)(122)(123)3!(123)=(12)(12)(32)32=116a_3 = \dfrac{\left ( \dfrac{1}{2} - 0 \right )\left ( \dfrac{1}{2} - 1 \right )\left ( \dfrac{1}{2} - 2 \right )\left ( \dfrac{1}{2} - 3 \right ) }{3! * \left ( \dfrac{1}{2} - 3 \right )} =\\ \dfrac{\left ( \dfrac{1}{2}\right )\left ( - \dfrac{1}{2} \right)\left ( - \dfrac{3}{2} \right)}{3 * 2} = \dfrac{1}{16}
This looks like a pattern to me. If n is an integer \ge 0, it appears that an+1=minus (2n1)an2n+2.a_{n+1} = \text {minus } \dfrac{(2n - 1)a_n}{2n + 2}. Can we prove it?

We calculated a0=1 and a1=12 above.a1=12=121=12a0=(120)a020+2    a1=minus (201)a020+2.\text {We calculated } a_0 = 1 \text { and } a_1 = \dfrac{1}{2} \text { above}.\\ \therefore a_1 = \dfrac{1}{2} = \dfrac{1}{2} * 1 = \dfrac{1 }{2} * a_0 = \dfrac{(1 - 2 * 0)a_0}{2 * 0 + 2} \implies\\ a_1 = \text {minus } \dfrac{(2 * 0 - 1)a_0}{2 * 0 + 2}.
Pattern if n = 1. Now consider any integer k \ge 0 such that

ak+1=minus (2k1)ak2k+2.By definition, a(k+1)+1=(j=0(k+1)+112j){(k+1)+1}!(12{(k+1)+1})=(j=0k+112j)(12{(k+1)+1}){(k+1)+1}!(12{(k+1)+1})=(j=0k+112j){12(k+1)}{(k+1)+1}(k+1)!{12(k+1)}=12(k+1)(k+1)+1(j=0k+112j)(k+1)!{12(k+1)}.But, by definition, (j=0k+112j)(k+1)!{12(k+1)}=ak+1.a(k+1)+1=12(k+1)(k+1)+1ak+1={12(k+1)}ak+12(k+1)+2    a(k+1)+1=minus {2(k+1)1}ak+12(k+1)+2.a_{k+1} = \text {minus } * \dfrac{(2k - 1)a_k}{2k + 2}.\\ \text {By definition, } a_{(k+1)+1} = \dfrac{\displaystyle \left ( \prod_{j=0}^{(k+1)+1} \dfrac{1}{2} - j \right ) }{\{(k+1) + 1\}! * \left ( \dfrac{1}{2} - \{(k + 1) + 1\} \right )} =\\ \dfrac{\displaystyle \left ( \prod_{j=0}^{k+1} \dfrac{1}{2} - j \right ) * \cancel{\left ( \dfrac{1}{2} - \{(k + 1) + 1\} \right )} }{\{(k+1) + 1\}! * \cancel{\left ( \dfrac{1}{2} - \{(k + 1) + 1\} \right )}} =\\ \dfrac{\displaystyle \left (\prod_{j=0}^{k+1} \dfrac{1}{2} - j \right ) * \left \{ \dfrac{1}{2} - (k + 1) \right \}}{\{(k+1) + 1\}(k + 1)! * \left \{ \dfrac{1}{2} - (k+1) \right \}} =\\ \dfrac{\dfrac{1}{2} - (k + 1)}{(k+1) + 1} * \dfrac{\displaystyle \left (\prod_{j=0}^{k+1} \dfrac{1}{2} - j \right )}{(k + 1)! * \left \{ \dfrac{1}{2} - (k+1) \right \}}.\\ \text {But, by definition, } \dfrac{\displaystyle \left (\prod_{j=0}^{k+1} \dfrac{1}{2} - j \right )}{(k + 1)! * \left \{ \dfrac{1}{2} - (k+1) \right \}} = a_{k+1}.\\ \therefore a_{(k+1)+1} = \dfrac{\dfrac{1}{2} - (k + 1)}{(k+1) + 1} * a_{k+1} = \dfrac{\{1 - 2(k + 1)\}a_{k+1}}{2(k+1) + 2} \implies\\ a_{(k+1)+1} = \text {minus } \dfrac{\{2(k + 1) - 1\}a_{k+1}}{2(k+1) + 2}.
So we can eliminate the product elements and just focus on the sum. Moreover, we have telescoping possibilities in the sum.
 
Top