word problem

LEG7930

New member
Joined
Aug 29, 2010
Messages
17
A merchant blends tea that sells for $4.65 a pound with tea that sells for $2.45 a pound to produce 110 lb of a mixture that sells for $3.85 a pound. How many pounds of each type of tea does the merchant use in the blend?

If someone can set it up I could probably get it, but I'm not sure where to start.
 
Let x=the amount of $4.65 tea.

Since we need 110 lbs altogether, the amount of $2.45 tea would be the remaining amount: 110-x.

Therefore, we have 4.65x+2.45(110x)=3.85(110)\displaystyle 4.65x+2.45(110-x)=3.85(110)

Solve for x.
 
Thank you so much! I did a similar one before but the money was throwing me off!
 
LEG7930, if I may be so presumptuous, when doing mixture problems, always try to formulate\displaystyle LEG7930, \ if \ I \ may \ be \ so \ presumptuous, \ when \ doing \ mixture \ problems, \ always \ try \ to \ formulate

a formula, to wit:\displaystyle a \ formula, \ to \ wit:

 lbs. of tea   X   price per lb.  =  Total Value\displaystyle \ lbs. \ of \ tea \ \ \ X \ \ \ price \ per \ lb. \ \ = \ \ Total \ Value

HighPriced Tea  x  X  4.65  =  4.65x\displaystyle High-Priced \ Tea \ \ x \ \ X \ \ 4.65 \ \ = \ \ 4.65x

LowPriced Tea  110x  X  2.45 = 269.502.45x\displaystyle Low-Priced \ Tea \ \ 110-x \ \ X \ \ 2.45 \ = \ 269.50-2.45x

MediumPriced Tea 110 X 3.85 = 423.50\displaystyle Medium-Priced \ Tea \ 110 \ X \ 3.85 \ = \ 423.50

Ergo, adding up the total values, we get 4.65x+269.502.45x = 423.50\displaystyle Ergo, \ adding \ up \ the \ total \ values, \ we \ get \ 4.65x+269.50-2.45x \ = \ 423.50

Solving for x gives x = 70 and 110x = 40\displaystyle Solving \ for \ x \ gives \ x \ = \ 70 \ and \ 110-x \ = \ 40

Check: (70)(4.65)+(40)(2.45) = 423.50\displaystyle Check: \ (70)(4.65)+(40)(2.45) \ = \ 423.50
 
Hello, LEG7930!

When I was leaning, I was shown a table for setting up the problem.


A merchant blends tea that sells for $4.65 a pound with tea that sells for $2.45 a pound
to produce 110 lb of a mixture that sells for $3.85 a pound.
How many pounds of each type of tea does the merchant use in the blend?

We have two types of tea:   type Aat$4.65 per lb.type Bat$2.45 per lb.\displaystyle \text{We have two types of tea: }\;\begin{array}{ccc} \text{type A} & \text{at} & \$4.65\text{ per lb.} \\ \text{type B} & \text{at} & \$2.45\text{ per lb.}\end{array}

We want: 110 lbs. of mixture worth $3.85 per pound.\displaystyle \text{We want: }110\text{ lbs. of mixture worth \$3.85 per pound.}
. . . Its value is: 110×$3.85=$423.50\displaystyle \text{Its value is: }\:110 \times \$3.85 \:=\:\$423.50

Write these facts into our chart:\displaystyle \text{Write these facts into our chart:}

. . No. of UnitTotalpoundspricevaluetype A $4.65type B$2.45Mixture110$3.85$423.50\displaystyle \begin{array}{|c||c|c||c|} \hline & \text{No. of } & \text{Unit} & \text{Total} \\ & \text{pounds} & \text{price} & \text{value} \\ \hline \hline \text{type A } & & \$4.65 & \\ \hline \text{type B} & & \$2.45 & \\ \hline \hline \text{Mixture} & 110 & \$3.85 & \$423.50 \\ \hline \end{array}


Let x = number of pounds of type A.\displaystyle \text{Let }x\text{ = number of pounds of type A.}
Then: 110x = number of pounds of type B.\displaystyle \text{Then: }\,110-x\text{ = number of pounds of type B.}

Write those quantities in our chart:\displaystyle \text{Write those quantities in our chart:}

. . No. of UnitTotalpoundspricevaluetype A x$4.65type B110x$2.45Mixture110$3.85$423.50\displaystyle \begin{array}{|c||c|c||c|} \hline & \text{No. of } & \text{Unit} & \text{Total} \\ & \text{pounds} & \text{price} & \text{value} \\ \hline \hline \text{type A } & x & \$4.65 & \\ \hline \text{type B} & 110-x& \$2.45 & \\ \hline \hline \text{Mixture} & 110 & \$3.85 & \$423.50 \\ \hline \end{array}


Read across the rows.\displaystyle \text{Read across the rows.}

\(\displaystyle \text{There is }x\text{ pounds of type A at \$4.65 per pound: }\text{ Total Value}\:=\:(x)(4.65) \:=\:4.65x\text{ dollars.}\)

\(\displaystyle \text{There is }(110-x)\text{ pounds of type B at \$2.45 per pound: }\text{ Total Value}\:=\:(2.45)(110-x) \:=\:2.45(110-x)\text{ dollars.}\)


Write those quantities in our chart:\displaystyle \text{Write those quantities in our chart:}

. . No. of UnitTotalpoundspricevaluetype A x$4.654.65xtype B110x$2.452.45(110x)Mixture110$3.85$423.50\displaystyle \begin{array}{|c||c|c||c|} \hline & \text{No. of } & \text{Unit} & \text{Total} \\ & \text{pounds} & \text{price} & \text{value} \\ \hline \hline \text{type A } & x & \$4.65 & 4.65x\\ \hline \text{type B} & 110-x& \$2.45 & 2.45(110-x)\\ \hline \hline \text{Mixture} & 110 & \$3.85 & \$423.50 \\ \hline \end{array}


The equation is waiting for us in the last column!\displaystyle \text{The equation is waiting for us in the last column!}

. . (Total value of type A) + (Total value of type B)  =  (Total value of Mixture)\displaystyle \text{(Total value of type A) }+\text{ (Total value of type B)} \;=\;\text{(Total value of Mixture)}


Therefore, we have:   4.65x+2.45(110x)  =  423.50\displaystyle \text{Therefore, we have: }\;4.65x + 2.45(110-x) \;=\;423.50


And that is where the equation comes from . . .\displaystyle \text{And }that\text{ is where the equation comes from . . .}
 
Top