Hello, greatwhiteshark!
For the following 3 questions, the letters r and θ represent polar coordinates.
Write each equation using rectangular coordinates.
The conversions are:
. . . r cos θ
.=
.x
. . . r sin θ
.=
.y
. . . . . . . . . . . . . . _____
. . . . . . .r<sup>2</sup>
.=
.x<sup>2</sup> + y<sup>2</sup> . or:
.r
.=
.√x<sup>2</sup> + y<sup>2</sup>
Moral: we want to have
r cos θ or
r sin θ, but usually we don't have them.
. . . . . . Often, we must <u>create</u> them.
.(See #1 below.)
Multiply through by r:
. r<sup>2</sup>
.=
.r sin θ + r
. . . . . . . . . . . . . . . . . . . . . . . ______
Substitute:
. x<sup>2</sup> + y<sup>2</sup>
.=
.y + √x<sup>2</sup> + y<sup>2</sup>
Basically, we can stop here.
We can juggle those terms around, get rid of the square root, etc.
. . but it doesn't really simplify very much.
Not much here to work with . . . just substitute fore the r.
. . . . ______
. . . √x<sup>2</sup> + y<sup>2</sup>
.=
.2
. . --->
. . x<sup>2</sup> + y<sup>2</sup>
.=
.4
[A circle, center at the origin, radius 2.]
Clear the denominator:
. r(1 - cos θ)
.=
.4
And we have:
. r - r cos θ
.=
.4
. . . . . . . . . . . ______
Substitute:
. √x<sup>2</sup> + y<sup>2</sup> - x
.=
.4
This one can be simplified a bit . . .
. . . . ______
. . . √x<sup>2</sup> + y<sup>2</sup>
. =
. x + 4
Square:
. x<sup>2</sup> + y<sup>2</sup>
. =
. x<sup>2</sup> + 8x + 16
And we have:
. y<sup>2</sup> . = . 8(x + 2)
You might recognize this as a parabola (or not) . . .
. . . vertex at (-2,0), opens to the right, with p = 4.